Dimensional information
Comparison of pipe dimensions 5.02
z Dimension installation method 5.03-5.04
Application examples $5.05-5.07$
Conclusions for practical use 5.08
Fitting combinations 5.09-5.15

Comparison of Pipe Dimensions

Due to the smooth internal bore of INSTAFLEX pipe similar flow velocities produced by traditional materials can achieved with a smaller internal diameter INSTAFLEX pipe. The tables
below provide a guide for the
selection of pipe size x size i.e.
INSTAFLEX $=20 \mathrm{~mm}$ o. .
Steel $\quad=1 / 2^{\prime \prime}$ o.d.
Copper $=18 \mathrm{~mm}$ o.d.

	INSTAFLEX PB Pipes										
o.d. (mm) ID $(\mathbf{m m})$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{7 5}$	$\mathbf{9 0}$	$\mathbf{1 1 0}$	$\mathbf{-}$
	11.6	14.4	20.4	26.0	32.6	40.8	51.4	61.2	73.6	90.0	-

	Steel Pipes galvanized DIN $2440 / 44$										
o.d. (inch)	$\mathbf{-}$	$1 / 2$	$3 / 4$	$\mathbf{1}$	$\mathbf{1} 1 / 4$	$\mathbf{1}^{1 / 2}$	$\mathbf{2}$	$\mathbf{2}^{1 / 2}$	$\mathbf{3}$	$\mathbf{-}$	$\mathbf{4}$
ID (mm)	-	16.0	21.6	27.2	35.9	41.8	53.0	68.8	80.8	-	105.3

	Copper Pipes DIN $1786 /$ SO 274										
o.d. (mm)	$\mathbf{1 5}$	$\mathbf{1 8}$	$\mathbf{2 2}$	$\mathbf{2 8}$	$\mathbf{3 5}$	$\mathbf{4 2}$	$\mathbf{5 4}$	$\mathbf{-}$	$\mathbf{7 6 . 1}$	$\mathbf{8 8 . 9}$	$\mathbf{1 0 8}$
ID (mm)											
	13	16	20	25	32	39	50	-	72.0	85.0	103

z-Dimension Installation

Introduction

The z-dimension assembly method is used to aid the measurement of pipe lengths between fittings, developed by George Fischer together with experienced installers in the domestic and industrial installation sector. It has proven to be very successful for many years.
As a basis for efficient design, factory preparation and pre-assembly, this method saves the enterprising contractor a considerable amount of time and money. It makes:

- efficient use of employees
- administration easier
- calculations and accounting easier
- efficient use of machinery
- reduced stocks of fittings and pipes
- transportation easier, less material «distribution time».

The z-dimension method requires

- exact planning of pipe layout
- knowing the dimensions of valves, appliances and their location
- coordination of architect, designer, contractor as well as any others involved in the construction whose work could effect the pipe layout
- use of fittings with constant dimensional and axis accuracy, as those manufactured by George Fischer
- standard pipe connections, which can be easily installed with George Fischer fittings and pipes.

z-Dimension and Measuring Method

z-dimension and a uniform measuring method are at the core of this assembly method by George Fischer.
The z-dimension is the «construction measurement» of the installer. This allows him to calculate easily the exact pipe length between fitting and/or valves.
The basis for the calculation and application of the z-dimension is

Uniform Measuring
Centreline - Centreline = M

In order to work out the length the pipe needs to be cut to you need: - the centreline to centreline pipe section, indicated by M

- the z-dimension for fittings and valves
- the construction height h for fittings with outer joint ends
- to take into consideration the jointing length x for pipe sections The exact pipe length L can then be easily calculated.

Measurement of Fitting

Fitting with inner joint end

$\mathbf{I}=$ length of fitting from centreline
z = z-dimension
$\mathbf{x}=$ length of joint

$$
z=1-x
$$

The z-dimension is the difference between the construction length L and the joint length \mathbf{x}.

Elbow 90° with two inner joint ends Isockets)

Fitting with outer joint end

$\mathbf{h}=$ height of fitting
\& =centreline
Elbow 90° with inner and outer joint ends (socket- spigot)

Inner joint ends are referred to as sockets and outer joint ends as spigots.

Type of joints available in pipe construction are:

- plug connections
- compression joints
- threaded unions
- soldered joints
- fusion joints
- solvent cement joints
- flange adaptors

Application Examples

$$
\begin{aligned}
& M=I+z_{1}+z_{2} \\
& I=M-\left(z_{1}+z_{2}\right)
\end{aligned}
$$

$M_{1}=h+z$
$M_{2}=\mid+z_{1}+z_{2}$

$\angle 45^{\circ}$
$M=h+z$
\mathbf{a} or $b=\mathbf{M} \times 0.707$

$\angle 45^{\circ}$
$M=z+h$
$b=M \times 0.707$
$a=M \times 0.707+(z+h)$

$\angle 45^{\circ}$
$M=a$ or $b \times 1.414$
$M=I+2 z$
l=M-2z

Conclusions for Practical Use

The z-dimension assembly method by George Fischer is the proven basis for small-scale and industrial preassembly of threaded pipe installations.

It combines various processes to produce a fast and efficient way of using materials, labour and of avoiding unnecessary assembly steps. It makes economic and highquality solutions possible.

This requires:

- Dividing the piping system and installation into manageable sections.
- Dividing installation into preassembly lin the workshop or on site) and site assembly work. It is advantageous to prepare as much as possible before going on site in the workshop.
- Preparing all the important pipe dimensions, so that pre-assembly can be done in quick succession.

The most important rule is:
Use as much information on pipe sections as possible from the installation drawings.

When sections must be prepared on site Ito compensate for variations in the structure):

Always measure along the path of the pipes.

The z-dimension assembly method by George Fischer enables:

- pre-assembly
- efficient use of materials, labour and machinery
- shorter assembly times
- quick adjustments to construction progress and site conditions
- independence of construction schedules
- better control of outside contracts
- better conditions for renovation work
- more accuracy with less effort
- consistent quality

To be able to exploit these advantages to the fullest, installation planning must be given equal priority in project planning. Efficient construction begins in the planning stage with complete details and coordinated information.

Attention: pre-assembled pipe combinations should never be so bulky that they cannot be easily transported or installed on site.

Note: The z-dimension method is not synonymous with prefabrication; it can be used wherever pipes with fittings are installed.

z-dimension method for different materials

Taking into consideration the varying characteristics of metal or plastic piping systems, the z-dimension method by George Fischer can also be used with all of them.

Fitting Combinations

Fittings with socket fusion joints

All dimensions

 in $\mathbf{~ m m}$

Dimension o.d. $\mathbf{m m}$	M
16	44
20	49
25	58
32	68
40	80
50	116
63	

Dimension o.d. $\mathbf{m m}$	\mathbf{a} / \mathbf{b}
16	27
20	30
25	35
32	41
40	48
50	56
63	68

Dimension o.d. $\mathbf{~ m m}$	M
16	44
20	49
25	68
32	80
40	96
50	116
63	

Dimension o.d. $\mathbf{~ m m}$	\mathbf{a} / \mathbf{b}
16	25
20	26
25	30
32	35
40	41
50	47
63	56

Minimum Distance between Fittings

Dimension o.d. $\mathbf{m m}$	M
$20-16$	47
$25-16$	51
$25-20$	53
$32-16$	57
$32-20$	59
$32-25$	64
$40-25$	70
$50-25$	77
$63-25$	88

Dimension o.d. $\mathbf{~ m m}$	\mathbf{a} / \mathbf{b}
$20-16$	30
$25-16$	32
$25-20$	33
$32-16$	37
$32-20$	37
$32-25$	39
$40-25$	43
$50-40-25$	48
$63-40-25$	56

Dimension o.d. $\mathbf{m m}$	\mathbf{a} / \mathbf{b}	\mathbf{M} $\mathbf{m i n}$.	\mathbf{L}
16	39	55	40
20	42	60	40
25	47	66	45
32	55	78	50
40	64	90	55
50	71	100	60
63	85	120	70
75	99	140	80
90	117	165	93
110	138	195	107

Dimension o.d. $\mathbf{m m}$	\mathbf{a} / \mathbf{b}	\mathbf{M} $\mathbf{m i n}$.	\mathbf{L}
$20-16$	52	73	39
$25-16$	54	77	39
$25-20$	55	78	39
$32-25$	66	94	47
$40-32$	74	105	51
$50-40$	92	130	59
$63-50$	103	145	64
$75-63$	120	170	72
$90-75$	138	195	85
$110-90$	163	230	97

Elbow 45°	Dimension o.d. mm	a/b	M min.	L
	$\begin{aligned} & 16 \\ & 20 \\ & 25 \end{aligned}$	35 37 42	$\begin{aligned} & 50 \\ & 52 \\ & 60 \end{aligned}$	$\begin{aligned} & 38 \\ & 38 \\ & 46 \end{aligned}$
	$\begin{aligned} & 32 \\ & 40 \\ & 50 \\ & 63 \end{aligned}$	50 57 60 71	$\begin{array}{r} 70 \\ 80 \\ 85 \\ 100 \end{array}$	$\begin{aligned} & 50 \\ & 56 \\ & 57 \\ & 66 \end{aligned}$
Elbow 45°	$\begin{array}{r} 75 \\ 90 \\ 110 \end{array}$	$\begin{array}{r} 85 \\ 95 \\ 113 \end{array}$	$\begin{aligned} & 120 \\ & 135 \\ & 160 \end{aligned}$	$\begin{array}{r} 84 \\ 93 \\ 110 \end{array}$

Dimension o.d. $\mathbf{~ m m}$	M min.	
$20-16$	78	40
$25-16$	82	40
$25-20$	85	40
$32-25$	102	48
$40-32$	115	53
$50-40$	140	59
$63-50$	160	67
$75-63$	195	80
$90-75$	225	91
$110-90$	270	107

Dimension o.d. $\mathbf{m m}$	M min.	
16	60	40
20	66	40
25	76	48
32	88	52
40	100	56
50	115	63
63	140	72
75	165	81
90	195	93
110	230	104

Minimum Distance between Centers M for Socket Fusion Machine* Jointing

Dimension o.d. $\mathbf{m m}$	M min.	L
16	150	130
20	156	130
25	164	136
32	176	140
40	188	144
50	202	150
63	224	156
* Fusion Machine 5120		

Fitting Combinations with PB Manifold

Pipe Lengths for Position Change

	Dimension o.d. mm										
	16	20	25	32	40	50	63	75	90	110	
a/b					e Le	ngths	L				M
80	97	97	92	85	79	73	-	-	-	-	113
100	125	121	120	113	107	101	90	-	-	-	141
120	154	150	149	142	136	130	119	110	-	-	170
150	196	192	191	184	178	172	161	152	140	124	212
180	238	224	233	226	220	214	203	194	182	166	254
210	281	277	276	269	263	257	246	237	225	209	297
250	337	333	332	325	319	313	302	293	281	265	353

	Dimension o.d. mm									
	16	20	25	32	40	50	63	75	90	110
M	Pipe Lengths L									
80	60	54	52	44	-	-	-	-	-	-
100	80	74	72	64	56	-	-	-	-	-
120	100	94	92	84	76	68	-	-	-	-
150	130	124	122	114	106	98	82	-	-	-
180	160	154	152	144	136	128	112	96	-	-
210	190	184	182	174	166	158	142	126	108	-
250	230	224	222	214	206	198	182	166	148	124

	Dimension o.d. mm										
	16	20	25	32	40	50	63	75	90	110	
a/b	Pipe Lengths L										M
80	101	99	99	93	89	85	79	-	-	-	113
100	129	127	127	121	117	113	107	105	99	-	141
120	158	156	156	150	146	142	136	134	128	120	170
150	200	198	198	192	188	184	178	176	170	162	212
180	242	240	240	234	230	226	220	218	212	204	254
210	285	283	283	277	273	269	263	261	255	247	297
250	341	339	339	333	329	325	319	317	311	303	353

z-Dimension

Elbow 45°
Elbow 45° Socket-spigot

$16-110 \mathrm{~mm}$
o.d.

Dimension o.d. $\mathbf{m m}$	Measurements \mathbf{z}					
\mathbf{h}	\mathbf{l}		D			
16	6		29	21		22
20	7		30	22		26
25	7		35	25		32
32	10		40	30		40
40	12		46	34	51	
50	14		53	39		64
63	17		62	45		81
75	18		-	51		92
90	21		-	58	114	
110	25		-	68		

c

Dimension o.d. $\mathbf{m m}$ a-b-c D		$\mathbf{z}_{\mathbf{1}}$	$\mathbf{z}_{\mathbf{2}}$						\mathbf{I}	$\mathbf{I}_{\mathbf{1}}$
$20-16-20$	13	13		28	28	26				
$20-16-16$	13	13		28	28	26				
$20-20-16$	13	13		28	28	26				
$25-16-25$	14	17		32	32	32				
$25-20-25$	14	17		32	32	32				
$25-20-20$	14	17		32	32	32				
$25-25-20$	17	17		32	32	32				
$32-16-32$	18	23		38	-	40				
$32-20-32$	18	23		38	-	40				
$32-25-32$	18	20		38	-	40				
$40-25-40$	22	26		44	44	51				
$50-25-50$	26	33		51	51	64				
$63-25-63$	34	44		62	62	81				

Reducer

Dimension o.d. $\mathbf{m m}$	Measurements					
$20-16$	\mathbf{z}					
25			30			
$25-16$	18			30		
$25-20$	18			33		
$32-20$	25			40		
$32-25$	22			40		
$40-20$	27			42		
$40-25$	24			42		
$40-32$	22			42		
$50-20$	40			55		
$50-25$	37			55		
$50-32$	35			55		
$50-40$	33			55		
$63-20$	43			58		
$63-25$	40			58		
$63-32$	38			58		
$63-40$	36			58		
$63-50$	33			58		
$75-63$	39			67		
$90-75$	40			72		
$110-63$	58			86		
$110-75$	53			86		
$110-90$	50			86		

Flange adaptor flat
Flange adaptor with groove
Flange adaptor with spigot

Dimension o.d. $\mathbf{m m}$	flat		with groove		with spigot	
\mathbf{z}		\mathbf{l}	\mathbf{z}	\mathbf{l}	\mathbf{h}	
16	5	20	8	23	42	
20	5	20	8	23	42	
25	5	23	8	26		
32	5	25	8	28	-	
40	5	27	10	32	-	
50	5	30	10	35	-	
63	5	33	10	38	-	
75	4	35	9	40	-	
90	6	42	11	47	-	
110	7	49	13	55	-	

