Intelligent Drivesystems, Worldwide Services

MANUAL BU 0500 GB

NORDAC SK 500E
Frequency Inverters

Safety and operating instructions for drive power converters

(as per: Low voltage guideline 73/23/EEC)

1. General

During operation, drive power converters may have, depending on their protection class, live, bare, moving or rotating parts or hot surfaces.

Unauthorised removal of covers, improper use, incorrect installation or operation leads to the risk of serious personal injury or material damage.

Further information can be found in this documentation.
All transportation, installation and initialisation and maintenance work must be carried out by qualified personnel (compliant with IEC 364, CENELEC HD 384, DIN VDE 0100, IEC 664 or DIN VDE 0110, and national accident prevention regulations).
For the purposes of these basic safety instructions, qualified personnel are persons who are familiar with the erection, installation, commissioning and operation of this product and who have the relevant qualifications for their work.

2. Proper use

Drive power converters are components intended for installation in electrical systems or machines.
When being installed in machines, the drive power converter cannot be commissioned (i.e. implementation of the proper use) until it has been ensured that the machine meets the provisions of the EC directive 89/392/EEC (machine directive); EN 60204 must also be complied with.

Commissioning (i.e. implementation of the proper use) is only permitted when the EMC directive (89/336/EEC) is complied with.
The drive power converters meet the requirements of the low voltage directive 73/23/EEC. The harmonised standards in prEN 50178/DIN VDE 0160, together with EN 60439-1/VDE 0660 Part 500 and EN 60146/VDE 0558 were applied for the drive power converter.

Technical data and information for connection conditions can be found on the rating plate and in the documentation, and must be complied with.

3. Transport, storage

Information regarding transport, storage and correct handling must be complied with.

4. Installation

The installation and cooling of the equipment must be implemented as per the regulations in the corresponding documentation.

The drive power converter must be protected against impermissible loads. In particular, no components must be bent and/or the insulation distances changed during transport and handling. Touching of electronic components and contacts must be avoided.
Drive power converters have electrostatically sensitive components that can be easily damaged by incorrect handling. Electrical components must not be mechanically damaged or destroyed (this may cause a health hazard!).

5. Electrical connection

When working on drive power inverters which are connected to high voltages, the applicable national accident prevention regulations must be complied with (e.g. VBG 4).
The electrical installation must be implemented as per the applicable regulations (e.g. cable cross-section, fuses, earth lead connections). Further information is contained in the documentation.
Information about EMC-compliant installation - such as shielding, earthing, location of filters and installation of cables - can be found in the drive power converter documentation. These instructions must also always be observed for drive inverters with CE approval. Compliance with the limit values specified in the EMC regulations is the responsibility of the manufacturer of the system or machine.

6. Operation

Systems where drive power converters are installed must be equipped, where necessary, with additional monitoring and protective equipment as per the applicable safety requirements, e.g. legislation concerning technical equipment, accident prevention regulations, etc. Modifications to the drive power converter using the operating software are permitted.
After the drive power converter is disconnected from the power supply, live equipment components and power connections should not be touched immediately because of possibly charged capacitors. Comply with the applicable information signs located on the drive power converter.

All covers must be kept closed during operation.

7. Maintenance and repairs

The manufacturer documentation must be complied with.

Documentation

Bezeichnung: BU 0500 DE
Mat. Nr.: 6075001
Series:
SK 500E
Device series: SK 500E, SK 505E, SK 510E, SK 511E, SK 515E SK 520E, SK 530E, SK 535E
Device types: SK 5xxE-250-112-O ... SK 5xxE-750-112-O ($0.25 \mathrm{~kW} . . .0 .75 \mathrm{~kW}, 1 \sim 115 \mathrm{~V}$, output $3 \sim 230 \mathrm{~V}$)
SK 5xxE-250-323-A ... SK 5xxE-112-323-A
(0.25 kW ... 2.2kW, $1 / 3 \sim 230 \mathrm{~V}$, output 3~230V) (3.0kW ... 11.0kW, 3~ 230V, output 3~230V)

SK 5xxE-550-340-A ... SK 5xxE-222-340-A
(0.55kW ... 22.0kW, 3~ 400V, output 3~400V)

Version list

Designation of previous issues	Software Version	Comments
BU 0500 DE, March 2005	V 1.1 R1	First issue based on BU 0750 DE
BU 0500 DE, May 2005	V 1.1 R2	Revision, supplementation and correction
BU 0500 DE, June 2005	V 1.2 Ro	Supplementation and correction P220, additionally P466/P554 EMC standards
BU 0500 DE, August 2005	V 1.2 Ro	Jumper illustration mains/motor, information on array levels with SK TU3-PAR, P107 lifting gear, P215, P420... 425 + P470 terminal numbers
BU 0500 DE, December 2005	V 1.3 R1	Brake resistance, NED address, Caution hot, output current $2.2 \mathrm{~kW} / 230 \mathrm{~V}, \mathrm{P} 415$ process controller, radio interference suppression level 400 V , E13.2 supplemented
BU 0500 DE, May 2006 Mat. No. 6075001 / 1806	V 1.4 R0	Switchover of nominal voltage/current value is reversed, Section 2.9 illustration corrected, new parameter P534 \rightarrow Error 12.1 and 12.2, P513 adjustment range extended.
BU 0500 DE, October 2006 Mat. No. 6075001 / 4006	V 1.5 R 0	115 V devices, information on repairs, P218, P400/546=46, P420-425=3-Wire-Control, P520 fmin, P543=22, P748-01, UL-Data Sect 7.5, 3-Wire-Control (Fct. P420-425)
BU 0500 DE, May 2007 Mat. No. 6075001 / 2207	V 1.6 R 0	Note on SK530E integrated, DIP switch 485/CAN, EMV kit, further details in P744-746, E004 extended to error 4.1, P217
BU 0500 DE, August 2007 Mat. No. 6075001 / 3307	V 1.6 Ro	UL text, note on functional safety "pulse lock", P217 vibration damping, $P 219$, value range $P 414, P 418=33, P 420 \ldots 425=71 / 72$, P509=10, P515, P533, P535 extended, P551, P552. P557 extended, P559 to 30 sec., P737 extended, parameter overview expanded by P6xx
BU 0500 DE, February 2008 Mat. No. 6075001 / 0808	V 1.7 R0	External 24 V supply (SK $5 \times 5 \mathrm{E}$) CP=Cold Plate version, pushthrough technique, SK TU3-POT, KTY-84 function Section 4.3/P400/405, P551 corrected, evaluate HTL sensor via DIN (P421/423, P461, P462, P463), P560 correction, E013.2 / E018 corrected
BU 0500 DE, Mai 2008 Mat. Nr. 6075001 / 2008	V 1.7 R0	RoHS-conform, WAGO-RJ45 terminals, Ri analog input, P434/441/450/455=18 FI ready, dimensions external heat sink technology, addresses
BU 0500 DE, April 2009 Mat. Nr. 6075001 / 1409	V 1.7 R0	Addition of the series of devices (up to 22 kW) BG5 and BG6, correction of errors, extension of functions / changes to parameters P108, P113; P434, P441, P450, P455, P481, P464, P707 Caution: Incompatibility of the function of parameter P113 with older software versions

Intended use of the frequency inverter

Compliance with the operating instructions is the requirement for error-free operation and the fulfilment of any warranty claims. You must first read these operating instructions before working with the device!
These operating instructions contain important information about service. They must therefore be kept close to the device.
The SK 500E frequency inverters are devices for industrial and commercial plants for operating three-phase asynchronous motors with squirrel-cage rotors. These motors must be suitable for operation with frequency inverters, other loads must not be connected to the devices.
The SK 500E frequency inverters are devices for stationary installation in control cabinets. All details regarding technical data and permissible conditions at the installation site must be complied with.
Commissioning (implementation of the intended use) is not permitted until it has been ensured that the machine complies with the EMC directive 89/336/EEC and that the conformity of the end product meets the machine directive 89/392/EEC (note EN 60204).
© Getriebebau NORD GmbH \& Co. KG, 2009
1 GENERAL INFORMATION 7
1.1 Overview 8
1.2 Delivery 9
1.3 Scope of supply 9
1.4 Safety and installation information 10
1.5 Approvals 11
1.5.1 European EMC guideline 11
1.5.2 UL approval -File No. E171342 11
1.5.3 C-Tick labelling - No. N 23134 11
1.5.4 RoHS-conform 11
1.6 Type code / device design 12
2 ASSEMBLY AND INSTALLATION 13
2.1 Installation 13
2.2 Dimensions 14
2.2.1 SK 500E, standard version 14
2.2.2 SK 500E...-CP in ColdPlate version 15
2.3 Mounting dimensions 16
2.3.1 SK 500E, standard version 16
2.3.2 SK 500E...-CP in ColdPlate version 17
2.4 External heat sink kit 18
2.4.1 Mounting the external heat sink kit: 19
2.4.2 Dimensions of external heat sink 20
2.5 EMC- Kit 21
2.6 Brake resistor (BR) 22
2.6.1 Electrical data BR. 23
2.6.2 Dimensions bottom-mounted BR 24
2.6.3 Dimensions Chassis BR 24
2.7 Line choke (accessory) 25
2.8 Output choke (accessories) 27
2.9 Wiring guidelines 28
2.10 Electrical connection 29
2.11 Electrical connection of power unit 29
2.11.1 Mains supply (X1-PE, L1, L2/N, L3) 31
2.11.2 Multi-function relay ($\mathrm{X} 3-1,2,3,4$) 31
2.11.3 Motor cable (X2 - U, V, W, earth) 32
2.11.4 Braking resistor connection (X2 - +B, -B) 32
2.11.5 Motor - PTC connection (X13 - T1, T2) (size 5 and above) 33
2.11.6 External control voltage, 24 V supply (X 12 - 44, 40) (Size 5 and above). 33
2.11.7 Safe pulse block 24 V (X8-86, 87, 89, 88) 34
2.11.8 DC-coupling (X2 - +B, -DC) 35
2.11.9 Jumper " A " mains input 36
2.11.10 Jumper " B " motor output 37
2.11.11 Internal jumper switching 38
2.12 Electrical connection of the control unit. 39
2.12.1 Terminal blocks 40
2.12.2 Details of the SK 5×0 E control connections 42
2.12.3 Details of the SK $5 \times 5 \mathrm{E}$ control connections 46
2.13 Colour and contact assignments for the incremental encoder 50
2.14 RJ45 WAGO connection module 50
2.15 Setpoint card $\pm 10 \mathrm{~V}$ for NORDAC SK 500E 51
3 DISPLAY AND OPERATION 52
3.1 Modular modules 52
3.2 Technology unit overview 53
3.2.1 SimpleBox, SK CSX-0 54
3.2.2 ControlBox, SK TU3-CTR 56
3.2.3 ParameterBox, SK TU3-PAR 62
3.2.4 ParameterBox parameters 69
3.2.5 ParameterBox error messages 73
3.2.6 Profibus module, SK TU3-PBR, ...-24V 75
3.2.7 CANopen module, SK TU3-CAO 75
3.2.8 DeviceNet module, SK TU3-DEV 76
3.2.9 InterBus module, SK TU3-IBS 76
3.2.10 SK TU3-AS1, AS interface 77
3.2.11 PotentiometerBox, SK TU3-POT 77
4 COMMISSIONING 78
4.1 Factory settings 78
4.2 Minimum configuration of control connections 79
4.3 KTY84-130 Connection (software version 1.7 and above) 80
4.4 Frequency addition and subtraction via operating boxes 81
5 PARAMETERISATION 82
5.1 Operating display 84
5.2 Basic parameters 86
5.3 Motor / characteristic curve parameters 92
5.4 Control parameters 98
5.5 Control terminals 101
5.6 Additional parameters 120
5.7 Positioning 131
5.8 Information 131
5.9 Parameter monitoring, User settings 138
6 ERROR MESSAGES 145
6.1 SimpleBox / ControlBox display 145
6.2 Table of possible error messages 145
7 TECHNICAL DATA 150
7.1 SK 500E: General Data 150
7.2 Electrical data 115V 151
7.3 Electrical data 230V 151
7.4 Electrical data 400V 153
7.5 Electrical data for UL certification 154
7.6 General conditions for ColdPlate technology 157
8 ADDITIONAL INFORMATION 160
8.1 Setpoint processing in the SK 500E 160
8.2 Process controller 162
8.2.1 Process controller application example 162
8.2.2 Process controller parameter settings 163
8.3 Electromagnetic compatibility Abbreviation: EMC) 164
8.4 EMC limit value classes 164
8.5 Reduced output power 166
8.5.1 Increased heat dissipation due to pulse frequency 166
8.5.2 Reduced overcurrent due to time 167
8.5.3 Reduced overcurrent due to output frequency 168
8.5.4 Reduced output current due to mains voltage 169
8.5.5 Reduced output current due to the heat sink temperature 169
8.6 Operation with FI circuit breakers 169
8.7 Maintenance and servicing information 170
9 KEYWORD INDEX 172
10 REPRESENTATIVES / BRANCHES 174

1 General information

The NORDAC SK 500E is based on the tried and tested Nord platform. These devices feature a compact design with optimum control characteristics.
These devices are provided with sensorless vector current control system which in combination with asynchronous three-phase motor types constantly ensures an optimised voltage-to-frequency ratio. This has the following significance for the drive: Peak start-up and overload torques at constant speed.
This series of devices can be adapted to individual requirements by means of the modular technology boxes.
Due to the numerous setting options, these inverters are capable of controlling all three-phase motors. The power range is from $\mathbf{0 . 2 5 k W}$ to $\mathbf{2 2 . 0 k W}$ with integrated mains filter.
This manual is based on the device software V1.7 R0 (see. P707) of SK 500E. If the frequency inverter used has a different version, this may lead to some differences. If necessary, you can download the current manual from the Internet (http://www.nord.com/).
For the SK $51 \times \mathrm{x} / 53 \mathrm{xE}$ there are additional descriptions for the functional safety (BU 0530) and the positioning system (BU 0510). These contain all the necessary additional information for start-up.
If a bus system is used for communication, a corresponding description (BU 0020...BU 0090) is provided, or this can be downloaded from the Internet (http://www.nord.com/).

In the standard version the device has a fixed cooling element, which causes corresponding heat dissipation if it is installed in a control cabinet. In order to achieve less heat dissipation in the control cabinet or to enable a smaller size, there are the following possibilities:

ColdPlate-Technology

Instead of a cooling element/fan, ColdPlate versions of the frequency inverter have a flat metal plate on the rear side which is mounted on an existing mounting plate (e.g. the rear wall of the control cabinet) so as to provide thermal conduction. The mounting surface can also be provided with a flow of cooling medium (water. oil), which enables a better heat dissipation than air due to its greater thermal conductivity. Because the heat dissipation does not take place in the control cabinet, the temperature of the interior remains considerably lower, which results in a longer life span of the power electronics. The installation depth is also reduced and the possible failure of the frequency inverter due to clogged air filters is avoided.

External heat sink technology

External heat sink technology is an optional supplement for ColdPlate devices. This is used if an external cooling system is provided, but no liquid-cooled mounting plate is available. A cooling element is mounted on the ColdPlate device, which passes through an opening in the rear panel of the control cabinet into the exterior air-cooled environment. Convection takes place outside of the control cabinet, which results in the same advantages as with ColdPlate technology.

1.1 Overview

Properties of the basic device SK 500E:

- High starting torque and precise motor speed control setting with sensorless current vector control.
- Can be mounted next to each other without additional spacing
- Permissible ambient temperature range 0 to $50^{\circ} \mathrm{C}$ (please refer to the technical data)
- Integrated EMV mains filter for limit curve A1 (and B1 for size 1-4 devices) as per EN55011 (not for 115 V devices)
- Automatic measurement of the stator resistance or determination of the precise motor data
- Programmable direct current braking
- Integrated brake chopper for 4 quadrant operation (optional brake resistors)
- 5 digital inputs, 2 Analogue inputs, 2 relay messages, 1 analogue output
- Four separate online switchable parameter sets
- RS232/485 interface via RJ12 plug

Additional features of the SK 510E compared with the SK 500E:

- Functional safety - secure pulse block (Manual BU 0530)

Additional features of the SK 511E compared with the SK 510E:

- $2 \times$ CANbus/CANopen interfaces via RJ45 plug (Manual BU 0060)

Additional features of the SK 520E compared with the SK 500E:

- 2 x CANbus/CANopen interfaces via RJ45 plug (Manual BU 0060)
- RS485 interface additionally via terminals
- $2 x$ digital inputs and $2 x$ digital outputs
- Speed feedback by means of incremental rotation encoder input

Additional features of the SK 530E compared with the SK 500E:

- Integrated Posicon positioning control (Manual 0510)
- CANopen absolute value encoder evaluation
- Functional safety - secure pulse block (Manual BU 0530)

Differing features of the SK 5xxE-...-CP compared with SK 5xxE:

- ColdPlate or external heat sink technology (included in Manual BU 0500)

Differing features of the SK 5x5E compared with SK 5x0E:

- External 24 V supply voltage (included in manual BU 0500), communication with the device can be performed even without power supply.

Differing features of sizes 5 and 6 compared with sizes 1 to 4 :

- Additional, separately mounted PTC input (potential isolated)
- External 24 V supply voltage with automatic switchover to the internal 24 V low voltage generator on failure of the external control voltage.
- Processing of both bipolar and analog signals

NOTE: The features of the particular basic unit are different in the SK 500E series. These differences will be pointed out in the course of this description (Section 2.12).

1.2 Delivery

Check the equipment immediately after delivery/unpacking for transport damage such as deformation or loose parts.
If there is any damage, contact the carrier immediately and implement a thorough assessment.

Important! This also applies even if the packaging is undamaged.

1.3 Scope of supply

Standard design: IP20
Integrated brake chopper
Integrated EMV mains filter for limit curve A1 as per EN55011
(not for 115V devices)
Blanking cover for technology unit slot
Screening terminal for control terminals
Covering for the control terminals
Operating manual

Available accessories: Braking resistor, for energy feedback (Section 2.6)
Interface converter RS232 \rightarrow RS485 (additional description BU 0010)
NORD CON, PC parameterising software > www.nord.com <
ePlan macros for producing electrical circuit diagrams > www.nord.com < EMC Kit (SK EMC 2-1, SK EMC 2-2, SK EMC 2-3, SK EMC 2-4) Section. 2.5 Mains filter, line choke, output chokes

Technology unit, Section 3.2:

SK CSX-0, SimpleBox, removable operating panel, 4 digit 7 segment LED display, single button control SK TU3-CTR, ControlBox, detachable operating panel, 4 figure 7 segment LED display, keyboard
SK TU3-PAR, ParameterBox,
removable control panel, multi-line plain language LCD display, keyboard
SK TU3-PBR, Profibus, additional unit for Profibus communication (1.5Mbaud)
SK TU3-PBR-24V, with external 24 V supply(12Mbaud)
SK TU3-CAO, CANopen, bus switch-on
SK TU3-DEV, DeviceNet, Bus switch-on
SK TU3-IBS, InterBus, Bus switch-on
SK TU3-AS1, AS interface
SK TU3-POT, PotentiometerBox,
removable control panel for control with a potentiometer and two buttons

NOTE: Additional BUS descriptions are available (BU 0020... BU 0090)
> www.nord.com

1.4 Safety and installation information

NORDAC SK 500E frequency inverters are equipment for use in industrial high voltage systems and are operated at voltages that could lead to severe injuries or death if they are touched.

- Installation and other work may only be carried out by qualified electricians and when the device is disconnected. The manual must always be available for these persons and must be complied with.
- Local regulations for the installation of electrical equipment as well as for accident prevention must be complied with.
- The equipment continues to carry hazardous voltages for up to 5 minutes after being switched off at the mains.
- For single phase operation $(230 \mathrm{~V})$ the mains impedance must be at least $100 \mu \mathrm{H}$ for each conductor. If this is not the case, a mains choke must be installed.
- For safe isolation from the mains, all poles of the supply cable to the frequency inverter must be able to be disconnected.
- Even during motor standstill (e.g. caused by a release block, blocked drive or output terminal short circuit), the line connection terminals, motor terminals and braking resistor terminals may still conduct hazardous voltages. A motor standstill is not identical to galvanic isolation from the mains.
- Attention, even parts of the control card and, in particular, the connection plug for the removable technology units can conduct hazardous voltages. The control terminals are mains voltage free.
- Warning, under certain settings the inverter can start automatically after the mains are switched on.
- The frequency inverter is only intended for permanent connection and may not be operated without effective earthing connections that comply with local regulations for large leak currents (> 3.5 mA). EN50178 / VDE 0160 stipulates the installation of a second earthing conductor or an earthing conductor cross-section of at least $10 \mathrm{~mm}^{2}$.
- Normal Fl-circuit breakers are not suitable as the sole protection in three-phase frequency inverters when local regulations do not permit a possible DC proportion in the faulty current. The FI circuit breaker must be an all-mains sensitive FI circuit breaker (type B) as per EN 50178 / VDE 0160.
- In normal use, NORDAC 500E frequency inverters are maintenance free. The cooling surfaces must be regularly cleaned with compressed air if the ambient air is dusty.

CAUTION

The heat sink and all other metal components can heat up to temperatures above $70^{\circ} \mathrm{C}$.
When mounting, sufficient distance from neighbouring components must be maintained. When working on the components, allow sufficient cooling time beforehand

The power unit can continue to carry voltages for up to 5 minutes after being switched off at the mains. Inverter terminals, motor cables and motor terminals may carry voltage!
Touching open or free terminals, cables and equipment components can lead to severe injury or death!
Work may only be carried out by qualified specialist electricians and with the electrical supply to the equipment disconnected!

- Children and the general public must be kept away from the equipment!
- The equipment may only be used for the purpose intended by the manufacturer. Unpermitted modifications and the use of spare parts and additional equipment that has not be bought from or recommended by the equipment manufacturer can lead to fire, electric shock and injury.
- Keep these operating instructions in an accessible location and give these to every operator!

This product is covered under marketing classification IEC 61800-3. In a domestic environment, this product can cause high frequency interference, which may require the user to take appropriate measures.
An appropriate measure would be the inclusion of a recommended line filter.

1.5 Approvals

1.5.1 European EMC guideline

If the NORDAC SK 500E is installed according to the recommendations in this instruction manual, it meets all EMC directive requirements, as per the EMC product standard for motor-operated systems EN 61800-3.
(See also Section. 8.3 Electromagnetic compatibility [EMC].)

1.5.2 UL approval -File No. E171342

"Suitable for use on a circuit capable of delivering not more than 5000 rms symmetrical Amperes, 120 Volts maximum (SK 5xxE-xxx112), 240 Volts maximum (SK $5 x x E-x x x-323$), or 480 Volts maximum (SK 5xxE-xxx-340), or 500 Volts maximum (SK 5xxE-xxx-350) and when protected by J class fuses as indicated."

Suitable for use with mains with a maximum short circuit current of 5000A (symmetrical), 120V maximum (SK 5xxE-xxx-112), 240 V maximum (SK $5 x x E-x x x-323$), or 480 V maximum (SK $5 x x E-x x x-340$), or 500 V maximum (SK $5 x x E-x x x-350$) and with protection with a J-class fuse as described in BU 0500 DE Section 7.5 .

NORDAC SK 500E frequency inverters have a motor overload protection. Further technical details can be found in Section 7.5.
The approval procedure (UL) for sizes 5 and 6 will be completed in the $3^{\text {rd }}$ quarter of 2009.

1.5.3 C-Tick labelling - No. N 23134

Frequency inverters of the NORD product series SK 500E (except 115V devices: SK5xxE-xxx-112-O) comply with all the relevant regulations in Australia and New Zealand.

1.5.4 RoHS-conform

The frequency inverters and optional modules of the SK 500E series frequency inverters are designed to be RoHS compliant according to Directive 2002/95/EU.

1.6 Type code / device design

SK 500E-250-323-A-CP

${ }^{*}$) designation 3 also includes combined devices which are intended for single and three-phase operation (please refer to the technical data)

2 Assembly and installation

2.1 Installation

NORDAC SK 500E frequency inverters are available in various sizes depending on the output. Attention must be paid to a suitable position when installing.
The equipment requires sufficient ventilation to protect against overheating. For this the minimum guideline distances from adjacent components above and below the frequency inverter, which could obstruct the air flow apply. (above > 100 mm , below > 100 mm)

Distance from device: Mounting can be immediately next to each other. However, for the use of brake resistances mounted below the device (not possible with ...-CP devices), the greater width (Section 2.5) must be taken into consideration, particularly in combination with temperature switches on the brake resistor!
Installation position The installation position is normally vertical. It must be ensured that the cooling ribs on the rear of the device are covered with a flat surface to provide good convection.

Warm air must be vented above the device!

If several inverters are arranged above each other, ensure that the upper air entry temperature limit is not exceeded. (see also Section 7, Technical Details). If this is the case, it is recommended that an "obstacle" (e.g. a cable duct) is mounted between the inverters so that the direct air flow (rising warm air) is impeded.
Heat dissipation: If the device is installed in a control cabinet, adequate ventilation must be ensured. The heat dissipation in operation is approx. 5% (according to the size and equipment of the device) of the rated power of the frequency inverter.

2.2 Dimensions

2.2.1 SK 500E, standard version

Device type	$\stackrel{\otimes}{\stackrel{N}{\infty}}$	Housing dimensions			Wall-mounting (Sect. 2.3.1)			Weight approx. [kg]
		A	B	C	D	E	\varnothing	
SK $5 \times x E-250-$ SK 5xxE-750-	BG1	186	74 *	153	220	1	5.5	1.4
SK 5xxE-111SK 5xxE-221-	BG2	226	74 *	153	260	1	5.5	1.8
SK 5xxE-301SK 5xxE-401-	BG3	241	98	181	275	1	5.5	2.7
SK 5xxE-551-340... SK 5xxE-751-340...	BG4	286	98	181	320	1	5.5	3.1
SK 5xxE-551-323... SK 5xxE-751-323...	BG5	324	157	224	358	93	5.5	8.0
SK 5xxE-112-340... SK 5xxE-152- 340...	BG5	324	157	224	358	93	5.5	8.0
SK 5xxE-112-323...	BG6	364	183	234	398	110	5.5	10.3
SK 5xxE-182- 340... SK 5xxE-222- 340...	BG6	364	183	234	398	110	5.5	10.3
		All dimensions in [mm]						
		*) for the use of brake resistors mounted below the device $=88 \mathrm{~mm}$ (Section 2.6)						

2.2.2 SK 500E...-CP in ColdPlate version

Device type	$\stackrel{\otimes}{\stackrel{N}{\infty}}$	Housing dimensions			Wall mounting		Weight approx. [kg]
		A	B	C	D	\varnothing	
SK 5xxE-250- ...-CP SK 5xxE-750- ...-CP	BG1	182	95	119	Mounting details in Section 2.3.2		1.3
SK 5xxE-111- ...-CP SK 5xxE-221- ...-CP	BG2	222	95	119			1.6
SK 5xxE-301- ...-CP SK 5xxE-401- ...-CP	BG3	237	120	119			1.9
SK 5xxE-551-340...-CP SK 5xxE-751-340...-CP	BG4	282	120	119			2.3
		All dimensions in [mm]					
		Brake resistors cannot be directly mounted below -CP devices (Section 2.6)					

2.3 Mounting dimensions

2.3.1 SK 500E, standard version

For wall mounting of the SK 500E, two (or four, for size 5 and above) appropriate brackets are supplied. These are inserted into the cooling element at the rear of the device as shown in the illustration. For this, no further accessories are needed.
Alternatively, the wall mounting brackets can be inserted at the side of the cooling element in order to minimise the necessary depth of the control cabinet.
In general, care must be taken that the rear of the cooling element is covered with a flat surface and that the device is mounted vertically. This enables optimum convection, which ensures fault-free operation.

2.3.2 SK 500E...-CP in ColdPlate version

According to the size of the frequency inverter, the dimensions for the drilling pattern listed below must be observed.

Size	Height H	h1	h2	Width W	k	u	Depth of the Cold Plate
S1	182	91	-	95			
S2	222	111	-		10		
S3	237	75.33	75.33	120			
S4	282	90.33	90.33				

Sizes $3+4$

Sizes $1+2$

2.4 External heat sink kit

The SK 500E series with ColdPlate technology (SK $5 x x E-\ldots-C P$) can be extended with the external heat sink kit.
In this construction, the heat sink is outside of the control cabinet and therefore does not need a "suitable cooling surface". The device is cooled by the external air.

This results in the following operating modes:

Option type	Size	Power [kW]	Operating mode
SK TH1-1 Mat. Nr. 275999050	S 1	$0.25-0.75$	S 1
SK TH1-2 Mat. Nr. 275999060	S 2	1.1-1.5	S 1

The external heat sink kit contains the following:

- Heat sink
- Gasket
- Heat-conducting paste
- 4 screws

Please only use the parts supplied, in order to ensure safe operation.

2.4.1 Mounting the external heat sink kit:

Before installing the device, please make certain that the walls of the control cabinet can bear the load.
An opening in the wall of the control cabinet, with the dimensions of the supplied heat sink is necessary for the installation.

1. The heat-conducting paste must be applied to the SK $5 \times x E$ ColdPlate version.
2. The heat sink must be mounted on the frequency inverter using the screws supplied.

3. The screws must be tightened and any excess heat-conducting paste must be removed.
4. Place the seal between the frequency inverter and the wall of the control cabinet.
5. The assembled device is inserted through the opening in the wall of the control cabinet.
6. Fix the frequency inverter to the wall of the control cabinet with all of the screws. (Drilling template, see Section 2.3.2)

If correctly installed, the device is now ready for use.

NOTE: If correctly installed, protection (from outside) of max. IP54 exists.

2.4.2 Dimensions of external heat sink

Device type	$\stackrel{\stackrel{N}{\infty}}{\infty}$	Heat sink dimensions			Cold-Plate dimensions			Weight approx. [kg]
		H_{K}	B_{K}	T_{K}	H	B	T	
SK 5xxE-250- SK 5xxE-750- SK TH1-1	S1	157	70	100	182	95	119	2.3
SK 5xxE-111- SK 5xxE-221- SK TH1-2	S2	200	70	110	222	95	119	3.4
All dimensions in [mm]								

2.5 EMC- Kit

For optimum EMC-compliant wiring, the optional EMC Kit must be used. This includes a screening angle, two hammer clips and two fixing screws.
The EMC Kit provides the possibility of attaching the screening of the motor cable to a large surface of the frequency inverter (interference source). If necessary a screened brake resistor cable can be attached with the two hammer clips.

The screening angle is attached to the two housing screws on the lower edge (below the U-V-W terminals). The motor cable screening is earthed to a large area of the screening angle by means of the hammer clip.

Device type	Size	EMC- Kit
SK 5xxE-250- ... SK 5xxE-750-	S1	
SK 5xxE-111- ... SK 5xxE-221-	S2	Mat. Nr. 275999011

Notes: The EMC Kit cannot be combined with ...-CP (ColdPlate) devices. Any cable screening must be earthed to a large area of the mounting surface.
If mounted on the top surface of the frequency inverter (mains connection side), the EMC Kit can also be used as a strain relief, for example to avoid contact problems with CANbus connections.

2.6 Brake resistor (BR)

During dynamic braking (frequency reduction) of a three phase motor, electrical energy is returned to the frequency inverter. In order to avoid an overvoltage switch-off of the frequency inverter, an external brake resistor can be used. With this, the integrated brake chopper (electronic switch) pulses the intermediate circuit voltage (switching wave approx. $420 \mathrm{~V} / 775 \mathrm{~V}(/ 825 \mathrm{~V})$ DC, according to the mains voltage $(115 \mathrm{~V}$, $230 \mathrm{~V} / 400 \mathrm{~V}(/ 500 \mathrm{~V})$) to the brake resistor. Here the excess energy is converted into heat.

CAUTION

The braking resistance and all other metal components can heat up to temperatures above $70^{\circ} \mathrm{C}$.

When mounting, sufficient distance from neighbouring components must be maintained. When working on the components, allow sufficient cooling time beforehand

For inverter powers up to 2.2 kW a standard bottom-mounted resistor (SK BR4-...IP40) can be used. This can additionally be equipped with an optional temperature switch (bi-metal, switching point $180^{\circ} \mathrm{C}$), in order to indicate an overload. The fixing material in the side groove is enclosed. The resistor and the temperature switch are connected by means of flexible stranded conductors. Approval: UL, cUL
Note: Brake resistors cannot be directly mounted below-CP (ColdPlate) devices.

Chassis resistors (SK BR2-..., IP20) are available for frequency inverters from 3 kW to 22 kW . These must be mounted in the control cabinet, close to the frequency inverter. There is a temperature switch on the braking resistor to provide protection against overload. Connection of the resistor and the temperature switch is by means of screw terminals. Approval: UL, cUL

SK BR2-... Size 3

SK BR2-... Size 4 ... 6

2.6.1 Electrical data BR

Inverter typ		Resistor type		Resistance	Continuous rating	CO	Connecting cable I terminals
SK 5xxE-250-112-O ... SK 5xxE-370-112-O		SK BR4-240/100 Mat. Nr. 275991110		240Ω	100 W		$2 \times 1.9 \mathrm{~mm}^{2}$
$\begin{array}{\|l} \text { SK 5xxE-550-112-O ... } \\ \text { SK 5xxE-750-112-O } \end{array}$		SK BR4-150/100 Mat. Nr. 275991115		150Ω	100 W		L = 0.5m
$\begin{aligned} & \hline \text { SK 5xxE-250-323-A ... } \\ & \text { SK 5xxE-370-323-A } \end{aligned}$		SK BR4-240/100 Mat. Nr. 275991110		240Ω	100 W		$2 \times 1.9 \mathrm{~mm}^{2}$
SK 5xxE-550-323-A ... SK 5xxE-750-323-A		SK BR4-150/100 Mat. Nr. 275991115		150Ω	100 W		AWG 14/19
SK 5xxE-111-323-A ... SK 5xxE-221-323-A		SK BR4-75/200 Mat. Nr. 275991120		75Ω	200 W		
SK 5xxE-301-323-A ... SK 5xxE-401-323-A		SK BR2- 35/400-C Mat. Nr. 278282045		35Ω	400 W		$2 \times 10 \mathrm{~mm}^{2}$
SK 5xxE-551-323-A ... SK 5xxE-751-323-A		in preparation					$2 \times 10 \mathrm{~mm}^{2}$
SK 5xxE-112-323-A		in preparation					$2 \times 10 \mathrm{~mm}^{2}$
$\begin{aligned} & \hline \text { SK 5xxE-550-340-A ... } \\ & \text { SK 5xxE-750-340-A } \end{aligned}$		SK BR4-400/100 Mat. Nr. 275991210		400Ω	100 W		$2 \times 1.9 \mathrm{~mm}^{2}$
SK 5xxE-111-340-A ... SK 5xxE-221-340-A		SK BR4-220/200 Mat. Nr. 275991220		220Ω	200 W		$\mathrm{L}=0.5 \mathrm{~m}$
SK 5xxE-301-340-A ... SK 5xxE-401-340-A		SK BR2-100/400-C Mat. Nr. 278282040		100Ω	400 W		x 10 mm
$\begin{aligned} & \text { SK 5xxE-551-340-A ... } \\ & \text { SK 5xxE-751-340-A } \end{aligned}$		SK BR2-60/600-C Mat. Nr. 278282060		60Ω	600 W		
SK 5xxE-112-340-A ... SK 5xxE-152-340-A		SK BR2- 30/1500-C Mat. Nr. 278282150		30Ω	1500 W		$2 \times 10 \mathrm{~mm}^{2}$
SK 5xxE-182-340-A ... SK 5xxE-222-340-A		SK BR2-22/2200-C Mat. Nr. 278282220		22Ω	2200 W		$2 \times 10 \mathrm{~mm}^{2}$
*) Maximum once within 120s							
Bi-metal temperature switch							
	Protection class	Voltage		Current	Dimensio		cting cable/ rminals
SK BR4-...	IP40	250Vac		$5 A$ at $\cos \varphi=1$ A at $\cos \varphi=0.6$	Width +10 (one sid		ble strand, $0.8 \mathrm{~mm}^{2}$ WG 18 $=0.5 \mathrm{~m}$
SK BR2-...	IP00	250Vac 125Vac 30Vdc		$\begin{gathered} 10 \mathrm{~A} \\ 15 \mathrm{~A} \\ 5 \mathrm{~A} \end{gathered}$	interna		rminals $\text { x } 4 \mathrm{~mm}^{2}$

2.6.2 Dimensions bottom-mounted BR

Resistor type	Size	A	B	C	Fixing dimensions	
					D	\varnothing
SK BR4-240/100 SK BR4-150/100 SK BR4-400/100	S 1	230	88	175	220	5.5
SK BR4-75/200 SK BR4-220/200	S 2	270	88	175	260	5.5

$C=$ instalment depth of the frequency inverter + bottom-mounted $B R$
all measurements in mm

2.6.3 Dimensions Chassis BR

2.7 Line choke (accessory)

To reduce input side current harmonics, additional inductivity can be installed into the line supply to the inverter.
These chokes are specified for a maximum supply voltage of 230 V or 480 V at $50 / 60 \mathrm{~Hz}$.
The protection class of the chokes is IP00 and they must therefore be installed in a control cabinet.
For frequency inverters with an output of 45 kW or more, a line choke is recommended where several devices are being used, in order to avoid possible adverse effects of one device on another. In addition, the charging currents (mains voltage fluctuations) are significantly reduced.

Inverter type NORDAC SK 500E	Input choke $1 \times 220-240 \mathrm{~V}$			L1	B1	T	Detail: mounting			000000000
	Type	Continuous current	Inductance				L2	B2		
$0.25 \ldots 0.75$ kW	SK CI1-230/8-C Mat. No.: 278999030	8 A	$2 \times 1.0 \mathrm{mH}$	78	65	89	56	40	M4	4
1.1 ... 2.2 kW	SK CI1-230/20-C Mat. No.: 278999040	20 A	$2 \times 0.4 \mathrm{mH}$	96	90	106	84	65	M6	10
All dimensions in [mm]										$\left[\mathrm{mm}^{2}\right]$

Inverter type NORDAC SK 500E	Input choke $3 \times 200-240 \mathrm{~V}$			L1	B1	T	Detail: mounting			000000000
	Type	Continuous current	Inductance				L2	B2		
0.25 ... 0.75 kW	SK CI1-460/6-C Mat. - Nr.: 276995004	6 A	$3 \times 4.88 \mathrm{mH}$	125	95	140	100	55	M5	4
1.1 ... 1.5 kW	SK CI1-460/11-C Mat. - Nr.: 276995010	11 A	$3 \times 2.93 \mathrm{mH}$	155	95	160	130	56.5	M8	4
2.2 .. 3.0 kW	SK CIT-460/20-C	20 A	$3 \times 1.47 \mathrm{mH}$	185	102	201	170	57.5	M6	10
4.0 .. 7.5 kW	SK CI1-460/40-C Mat. - Nr.: 276995040	40 A	$3 \times 0.73 \mathrm{mH}$	190	122	201	170	77.5	M6	10
11.0. kW	SK CI1-460/70-C Mat. - Nr.: 276995070	70 A	$3 \times 0.47 \mathrm{mH}$	230	125	260	180	98	M6	35
All dimensions in [mm]										$\left[\mathrm{mm}^{2}\right]$

Inverter type NORDAC SK 500E	Input choke $3 \times 380-480 \mathrm{~V}$			L1	B1	T	Detail: mounting			n00000000
	Type	Continuous current	Inductance				L2	B2		
0.75 ... 2.2 kW	SK CI1-460/6-C	6 A	$3 \times 4.88 \mathrm{mH}$	125	95	140	100	55	M5	4
3.0 ... 4.0 kW	SK CI1-460/11-C Mat. - Nr.: 276995010	11 A	$3 \times 2.93 \mathrm{mH}$	155	95	160	130	56.5	M8	4
$5.5 \ldots 7.5 \mathrm{~kW}$	SK Cl1-460/20-C Mat. - Nr.: 27699502	20 A	$3 \times 1.47 \mathrm{mH}$	185	102	201	170	57.5	M6	10
$11 . . .15 \mathrm{~kW}$	SK CI1-460/40-C Mat. - Nr.: 276995040	40 A	$3 \times 0.73 \mathrm{mH}$	190	122	201	170	77.5	M6	10
18.5 ... 22 kW	SK CI1-460/70-C Mat. - Nr.: 276995070	70 A	$3 \times 0.47 \mathrm{mH}$	230	125	260	180	98	M6	35
All dimensions in [mm]										[mm^{2}]

2.8 Output choke (accessories)

To reduce interference signals from the motor cable or to compensate for cable capacitance in long motor cables, an additional output choke can be installed into the inverter output.
Take care during installation that the pulse frequency of the frequency inverter is set to $3-6 \mathrm{kHz}$ (P504 = 3-6).
These chokes are specified for a maximum supply voltage of 480 V at $0-100 \mathrm{~Hz}$.
An output choke should be fitted for cable lengths over $100 \mathrm{~m} / 30 \mathrm{~m}$ (unshielded/shielded). Further details can be found in Section 2.10.4 "Motor cable". The protection class of the chokes is IP00 and they must therefore be installed in a control cabinet.

Inverter type NORDAC SK 500E	Output choke 3 x 200 - 240V			L1	B1	T	Detail: mounting			n00000000
	Type	Continuous current	Inductance				L2	B2		
$0.25 \ldots 0.75 \mathrm{~kW}$	SK CO1-460/4-C Mat. - Nr.: 276996004	4 A	$3 \times 3.5 \mathrm{mH}$	120	104	140	84	75	M6	4
1.1 ... 1.5 kW	SK CO1-460/9-C Mat. - Nr.: 276996009	9 A	$3 \times 2.5 \mathrm{mH}$	155	110	160	130	71.5	M6	4
2.2 ... 3.0 kW	SK CO1-460/17-C Mat. - Nr.: 276996017	17 A	$3 \times 1.2 \mathrm{mH}$	185	102	201	170	57.5	M6	10
$4 \ldots 7.5 \mathrm{~kW}$	SK CO1-460/33-C Mat. - Nr.: 276996033	33 A	$3 \times 0.6 \mathrm{mH}$	185	122	201	170	77.5	M6	10
11 kW	$\underset{\text { Mat. - Nr.: 276996060 }}{\text { SK }}$	60 A	$3 \times 0.33 \mathrm{mH}$	230	125	260	176	71	M6	35
All dimensions in [mm]										[mm^{2}]

Inverter type NORDAC SK 500E	Output choke $3 \times 380-460 \mathrm{~V}$			L1	B1	T	Detail: mounting			n00000000
	Type	Continuous current	Inductance				L2	B2		
0.55 ... 4.0 kW	SK CO1-460/9-C Mat. - Nr.: 276996009	9 A	$3 \times 2.5 \mathrm{mH}$	155	110	160	130	71.5	M6	4
5.5 ... 7.5 kW	SK CO1-460/17-C Mat. - Nr.: 276996017	17 A	$3 \times 1.2 \mathrm{mH}$	185	102	201	170	57.5	M6	10
$11 . .15 \mathrm{~kW}$	$\underset{\text { Mat. - Nr.: } 276996033}{\text { SK }}$	33 A	$3 \times 0.6 \mathrm{mH}$	185	122	201	170	77.5	M6	10
18.5 ... 22 kW	$\underset{\text { Mat. - Nr.: } 276996060}{\text { SK CO1-4 }}$	60 A	$3 \times 0.33 \mathrm{mH}$	230	125	260	176	71	M6	35
All dimensions in [mm]										[mm^{2}]

2.9 Wiring guidelines

The frequency inverter has been developed for use in an industrial environment. In this environment, high levels of electromagnetic interference can influence the frequency inverter. In general, correct installation ensures safe and problem-free operation. To meet the limit values of the EMC directives, the following instructions should be complied with.
(1) Ensure that all equipment in the control cabinet is securely earthed using short earthing cables that have large cross-sections and which are connected to a common earthing point or earthing bar. It is especially important that every control device connected to the frequency inverters (e.g. an automation device) is connected, using a short cable with large cross-section, to the same earthing point as the inverter itself. Flat conductors (e.g. metal clamps are preferable, as they have a lower impedance at high frequencies.
(2) The bonding cable of the motor controlled by the frequency inverter should be connected directly to the earthing terminal of the associated frequency inverter. The presence of a central earthing bar in the control cabinet and the grouping together of all bonding conductors to this bar normally ensures safe operation. (See also Section. 8.3/8.4 EMC)
(3) Where possible, screened cables should be used for control loops. The shielding at the cable end should be carefully sealed and it must be ensured that the wires are not laid over longer distances without shielding.
The shields of analog setpoint cables should only be earthed on one side on the frequency inverter.
(4) The control cables should be installed as far as possible from power cables, using separate cable ducts etc. Where cables cross, an angle of 90° should be ensured as far as possible.
(5) Ensure that the contactors in the cabinet are interference protected, either by RC circuits in the case of AC contactors or by free-wheeling diodes for DC contactors, for which the interference traps must be positioned on the contactor coils. Varistors for over-voltage limitation are also effective. This interference suppression is particularly important when the contactors are controlled by the relay in the frequency inverter.
(6) Use screened or armoured cable for the load connections (motor cable) and earth the screening/armour at both ends. If possible, earthing should be made directly to the electrically conducting mounting plate of the control cabinet or the screening angle of the EMC Kit (Section 2.4).
In addition, an EMC-compliant cabling must be ensured. (see also Section 8.3/8.4 EMC). If required, an optional output choke can be supplied.

The safety regulations must be complied with under all circumstances when installing the frequency inverter!

The control cables, line cables and motor cables must be laid separately. In no case should they be laid in the same protective pipes/installation ducts.
The test equipment for high voltage insulations must not be used on cables that are connected to the frequency inverter.

2.10 Electrical connection

THESE DEVICES MUST BE EARTHED.
Safe operation of the devices presupposes that qualified personnel mount and operate it in compliance with the instructions provided in these operating instructions.

In particular, the general and regional mounting and safety regulations for work on high voltage systems (e.g. VDE) must be complied with as must the regulations concerning professional use of tools and the use of personal protection equipment.
Dangerous voltages can be present at the motor connection terminals even when the inverter is switched off. Always use insulated screwdrivers on these terminal fields.
Ensure that the input voltage source is not live before setting up or changing connections to the unit.

Make sure that the inverter and motor have the correct supply voltage set.

2.11 Electrical connection of power unit

The terminals of the mains connection and the multi-function relay (X3) are located on the top of the frequency inverter.
The motor and brake resistor connections are located on the base of the unit.
The control terminals can be accessed from the front of the frequency inverter. For this the terminal cover (below the TU insert) must be pushed downwards, and can then be removed. The connecting terminals are then easily accessible.

Before connecting the device, the following must be observed:

1. Ensure that the voltage source provides the correct voltage and is suitable for the current required (see Section. 7 Technical data).
2. Ensure that suitable circuit breakers with the specified nominal current range are installed between the voltage source and the inverter.
3. Connect the line voltage directly to the line terminals $L_{1}-L_{2} / N-L_{3}$ and the earth (according to the device).
4. A four-core cable must be used to connect the motor. The cable is connected to the motor terminals $\mathbf{U}-\mathbf{V}-\mathbf{W}$ and the earth.
5. If screened motor cables (recommended) are used, the cable screening must also be connected to a large area of the metallic screening angle of the EMC Kit (Section 2.5), however, at least to the electrically conducting mounting surface of the control cabinet.

NOTE: When using specific wiring sleeves, the maximum connection cross-section can be reduced.
To connect the power unit, the following screwdrivers must be used:

Size	Screwdriver	
Frequency Inverter	Type	
Size 1-4	Cross-head	Pozidrive/Supadrive size: 1
S 5	Slot-head	0.6×3.5
S 6	Slot-head	1.0×6.5

NOTE: If synchronising devices or several motors are connected in parallel, the frequency inverter must be switched over to linear voltage/frequency characteristic curves, $\rightarrow \mathrm{P} 211=0$ and P212 $=0$.

NOTE: The use of shielded cables is essential in order to maintain the specified radio interference suppression level. (See also Chapter 8.4 EMC limit value classes)

ATTENTION

This device produces high frequency interference, which may make additional suppression measures necessary in domestic environments. (Details in Section 8.3/8.4)

2.11.1 Mains supply (X1-PE, L1, L2/N, L3)

No special safety measures are required on the mains input side of the frequency inverter. It is advisable to use the normal mains fuses (see technical data) and a main switch or circuit breaker.
115 V devices of 0.25 kW to 0.75 kW may only be used with a 110...120V (L/N = L1/L2) single phase supply.

230 V devices of 0.25 kW to 2.2 kW may optionally be operated with single phase 230 V (L/N = L1/L2) or three phase (L1/L2/L3) supplies, however, not with three-phase 400V!

All 400 V devices and devices $\geq 3 \mathrm{~kW}$ may only be operated with a three-phase supply (L1/L2/L3). For the exact specification, please refer to the technical data in Section 7.

Note: The use of this frequency inverter on an IT network is possible after modifications by means of jumpers. Further details in Section 2.11.9-2.11.10.

Connection data:

Frequency Inverter	Size $\mathbf{1} \ldots \mathbf{4}$	Size $\mathbf{5}$	Size $\mathbf{6}$
Rigid cable cross-section	$0.2 \ldots 6 \mathrm{~mm}^{2}$	$0.5 \ldots 16 \mathrm{~mm}^{2}$	$0.5 \ldots 35 \mathrm{~mm}^{2}$
Flexible cable cross-section	$0.2 \ldots 4 \mathrm{~mm}^{2}$	$0.5 \ldots 10 \mathrm{~mm}^{2}$	$0.5 \ldots 25 \mathrm{~mm}^{2}$
AWG standard	AWG $24-10$	AWG $20-6$	AWG $20-2$
Tightening torque for screw terminals	$0.5 \ldots 0.6 \mathrm{Nm}$	$1.2 \ldots 1.5 \mathrm{Nm}$	$2.5 \ldots 4.5 \mathrm{Nm}$

2.11.2 Multi-function relay (X3-1, 2, 3, 4)

The functions of this relay can be set as required using the parameters P434 to P443. The contacts may only be operated with a maximum of 230 V AC / 24 V DC, 2 A .
In the default setting, the terminals 1-2 (output 1, P434) can control a mechanical motor brake. This is then released or applied at the correct time. To optimise the process, the appropriate delay times ($0.2-0.3 \mathrm{sec}$) should be set in the parameters P107/P114.
In the default setting, the closed contact on terminals 3-4
 (output 2, P441) reports the readiness of the frequency inverter. If there is an error message or the frequency inverter is without voltage, this contact is open.

Connection data:

Frequency Inverter	Size $1 \ldots 4$	Size $5 \ldots 6$
Rigid cable cross-section	$0.14 \ldots 2.5 \mathrm{~mm}^{2}$	$0.2 \ldots 6 \mathrm{~mm}^{2}$
Flexible cable cross-section	$0.14 \ldots 1.5 \mathrm{~mm}^{2}$	$0.2 \ldots .4 \mathrm{~mm}^{2}$
AWG standard	AWG $26-14$	AWG $24-10$
Tightening torque for screw terminals	$0.5 \ldots 0.6 \mathrm{Nm}$	$0.5 \ldots 0.6 \mathrm{Nm}$

2.11.3 Motor cable (X2-U, V, W, earth)

The motor cable may have a total length of 100 m if this is a standard cable. If a screened motor cable is used, or if the cable is laid in a metal conduit which is well earthed, the total length should not exceed 30m.
For greater lengths of cable, an additional output choke (accessory) must be used.

Note: Please also observe Section 8.4 EMC limit value classes.

Note: \quad For multiple motor use the total cable length consists of the sum of the individual cable lengths.

Connection data:

Frequency Inverter	Size $\mathbf{1} \ldots \mathbf{4}$	Size $\mathbf{5}$	Size $\mathbf{6}$
Rigid cable cross-section	$0.2 \ldots 6 \mathrm{~mm}^{2}$	$0.5 \ldots 16 \mathrm{~mm}^{2}$	$0.5 \ldots 35 \mathrm{~mm}^{2}$
Flexible cable cross-section	$0.2 \ldots 4 \mathrm{~mm}^{2}$	$0.5 \ldots 10 \mathrm{~mm}^{2}$	$0.5 \ldots 25 \mathrm{~mm}^{2}$
AWG standard	AWG $24-10$	AWG $20-6$	AWG $20-2$
Tightening torque for screw terminals	$0.5 \ldots 0.6 \mathrm{Nm}$	$1.2 \ldots 1.5 \mathrm{Nm}$	$2.5 \ldots 4.5 \mathrm{Nm}$

2.11.4 Braking resistor connection ($\mathrm{X} 2-+\mathrm{B},-\mathrm{B}$)

The terminals $+B /-B$ are intended for the connection of a suitable braking resistor. A short screened connection should be selected.

Note: The great production of heat in the braking resistor must be taken into account.

Note: For devices with 115V mains voltage, no DC terminal is provided.

Attention: The terminals $+B,-D C$ are suitable for the $D C$-coupling of several frequency inverters. Never connect a braking resistor to DC! For further details of DC-coupling, please refer to Section 2.11.8.

Connection data:

Frequency Inverter	Size $\mathbf{1} \ldots \mathbf{4}$	Size $\mathbf{5}$	Size $\mathbf{6}$
Rigid cable cross-section	$0.2 \ldots 6 \mathrm{~mm}^{2}$	$0.5 \ldots 16 \mathrm{~mm}^{2}$	$0.5 \ldots 35 \mathrm{~mm}^{2}$
Flexible cable cross-section	$0.2 \ldots 4 \mathrm{~mm}^{2}$	$0.5 \ldots 10 \mathrm{~mm}^{2}$	$0.5 \ldots 25 \mathrm{~mm}^{2}$
AWG standard	AWG $24-10$	AWG 20-6	AWG $20-2$
Tightening torque for screw terminals	$0.5 \ldots 0.6 \mathrm{Nm}$	$1.2 \ldots 1.5 \mathrm{Nm}$	$2.5 \ldots 4.5 \mathrm{Nm}$

2.11.5 Motor - PTC connection (X13-T1, T2) (size 5 and above)

(As per EN 60947-8)
For size 5 and 6 devices, the connection of the motor thermistor is made via terminals T1 and T2. For smaller sizes of inverter (S 1-4) the thermistor must be connected to digital input 5 (DIN5) on plug block X5 (See section 2.12 "Electrical connection of
 the control unit").

Anschlussdaten:

Frequency Inverter	Size $\mathbf{5} \ldots \mathbf{6}$
Rigid cable cross-section	$0.2 \ldots 6 \mathrm{~mm}^{2}$
Flexible cable cross-section	$0.2 \ldots 4 \mathrm{~mm}^{2}$
AWG standard	AWG $24-10$
Tightening torque for screw terminals	$0.5 \ldots 0.6 \mathrm{Nm}$
Nominal Ratings	$>3.6 \mathrm{k} \Omega$
Triggering value	$>1.65 \mathrm{k} \Omega$
Relapse value	5 V to $\mathrm{R}<4 \mathrm{k} \Omega$
Measuring voltage	

2.11.6 External control voltage, 24 V supply (X 12 - 44, 40) (Size 5 and above)

Size 5 and 6 frequency inverters are equipped with both an internal switched mains unit for the provision of the control voltage, as well as a separate terminal block for connection to an external low voltage supply. Switchover between the internal and external power supply is carried out automatically.
 Incorrect connections must be avoided.
Size 1-4 SK5x5E devices are not equipped with an internal mains unit. This means that in order to provide their function, these units must be connected to an external power supply via terminal block X5:44 / X5:40. For further information, please refer to Section 2.12.

Connection data:

Frequency Inverter	Size $\mathbf{5} \ldots \mathbf{6}$
Rigid cable cross-section	$0.2 \ldots 6 \mathrm{~mm}^{2}$
Flexible cable cross-section	$0.2 \ldots 4 \mathrm{~mm}^{2}$
AWG standard	AWG $24-10$
Tightening torque for screw terminals	$0.5 \ldots 0.6 \mathrm{Nm}$
Nominal Ratings	$+24 \ldots 30 \mathrm{~V}$ (min 1000mA)
Terminal $\mathrm{X} 12: 44$ (input)	GND
Terminal X12:40	

2.11.7 Safe pulse block 24 V (X8-86, 87, 89, 88)

Series SK 51xE and SK 53xE frequency inverters are equipped with the option "Functional safety" (See supplementary operating instruction BU 0530). Connection of the corresponding control cables is made via terminal block $\mathrm{X8}$. Up to and including size 4, this terminal block is located under the front cover (See Section 2.12.1 "Terminal blocks"). From size 5 and above, the
 terminal block X8 is located on the underside of the frequency inverter (motor output side).

Connection data:

Frequency Inverter	Size $\mathbf{5} \ldots \mathbf{6}$
Rigid cable cross-section	$0.2 \ldots 6 \mathrm{~mm}^{2}$
Flexible cable cross-section	$0.2 \ldots 4 \mathrm{~mm}^{2}$
AWG standard	AWG $24-10$
Tightening torque for screw terminals	$0.5 \ldots .0 .6 \mathrm{Nm}$
Nominal Ratings	+24 V (max. 300 mA)
Terminal X8:86 (output: +24V supply)	GND
Terminal X8:87	$+24 \mathrm{~V} \pm 25 \%$ (max. 100 mA)
Terminal X8:89 (Input: "Safe pulse block"	GND
Terminal X8:88	

[^0](For further details, see the separate instruction BU 0530 "Functional safety")

2.11.8 DC-coupling (X2 - +B, -DC)

In drive engineering, DC-coupling is advisable if motors act as drivers and generators at the same time in the system. Here, the energy from the drive which is acting as a generator can be fed back to the drive which is acting as a motor. The advantages are lower energy consumption and the sparing use of braking resistors.
Note: \quad In the 115 V devices (SK 5xx-xxx-112-O, no DC terminal is provided. DC-coupling is therefore not possible.
NB: \quad For direct current coupling of single-phase devices, care must be taken that the coupling to the same external conductor is used.

Diagram of a DC-coupling:

The following points must be taken into account:
(1) Use a connecting cable between the equipment (two devices), which is as short as possible. If different sizes of frequency inverter are used, the connection in the DC circuit must be made with the maximum cross-section of the smaller device.
(2) Each device is provided with its own mains supply.
(3) Ensure that the coupling is only made after readiness is reported. Otherwise, there is a danger that all the frequency inverters will be charged via a single device.
(4) Ensure that the coupling is disconnected as soon as one of the devices is no longer ready for operation.
(5) For a high availability a braking resistor (possibly lower power) must be used. If different sizes of frequency inverters are used, the braking resistor must be connected to the larger of the two frequency inverters.
(6) If devices with the same rating (identical type) are coupled, and the same mains impedances are in effect (identical lengths of cable to the mains rail), the frequency inverters may be operated without mains chokes. Otherwise a mains choke must be installed in the mains cable of each frequency inverter.

2.11.9 Jumper "A" mains input

In order to make the frequency inverter SK 500E suitable for IT networks this jumper must be set to position 0 . Here it must be noted that the specified degree of radio interference suppression changes. Further details can be found in Section 8.3. EMC.

Size 1-4

$=$ normal position $=$ Position 2

Size 5-6

$=$ Operation in IT network $=$ Position 0

$=$ normal position $=$ Position 2

2.11.10 Jumper "B" motor output

This jumper makes the device suitable for IT networks or reduces the leakage current of the frequency inverter to earth. This may be necessary of several frequency inverters are operated via a single FI circuit breaker.
Here it must be noted that the specified degree of radio interference suppression changes. Further details can be found in Section 8.3. EMC.

Size 1-4

\square \bullet \square 0	= Operation in IT network $=$ Position 0
- 0	= nomal position $=$ Position 1
- \quad.	= reduced leakage current - Position 2

Underside of the device

(The set pulse frequency (P504) only has a slight influence on the leakage current.)

Size 5-6

$\begin{array}{ll}\bullet \bullet & \text { O Operation in IT network }=\text { Position } 0 \\ \square \bullet \square\end{array}$

- • = normal position $=$ Position 1

Underside of the device

2.11.11 Internal jumper switching

As delivered, the jumpers are set in the "normal position". With this, the mains filter has its normal effect and leakage current.

Summery of operating modes

Frequency Inverter	Jumper A	Jumper B	Comments	Leakage Current
Size 1-4	Position 0	Position 0	Operation in IT network	Not applicable
Size 1-4	Position 2	Position 1	Large filtering effect (See Section 8.4)	$<30 \mathrm{~mA}$
Size 1-4	Position 2	Position 2	Limited filtering effect (See Section 8.4)	$\ll 30 \mathrm{~mA}$ $>3.5 \mathrm{~mA}$
Size 5-6	Position 0	Position 0	Operation in IT network	Not applicable
Size 5-6	Position 2	Position 1	Large filtering effect (See Section 8.4)	$<3.5 \mathrm{~mA}$ (Low leakage current, as per EN50178)

2.12 Electrical connection of the control unit

The control terminals are on the front cover of the frequency inverter. The equipment differs according to the version (SK 500E / 505E / 510E / 511E/ 515E/ 520E / 530E / 535E) and size (S 1-4 or S 5-6).

Connection terminals:
Plugs, terminals and connectors can be released with a small screwdriver.

Cable cross-section: $\quad 0.14 \ldots 1.5 \mathrm{~mm}^{2}$, AWG 26-16, stiff or flexible

Control cable: Lay and shield separately from the mains/motor cables.

Series / Size	Control Voltage	Voltage	max. Load / Comments
SK 5X0E / S 1-4	INTERNAL (OUTPUT)	$\begin{aligned} & 5 \mathrm{~V} \pm 20 \% \\ & 10 \mathrm{~V} \\ & 15 \mathrm{~V} \pm 20 \% \end{aligned}$	250MA 5MA, REFERENCE VOLTAGE FOR AN EXTERNAL POTENTIOMETER 150MA TO SUPPLY THE DIGITAL INPUTS OR A 10-30V INCREMENTAL ENCODER
	ANALOGUE OUTPUT	0...10V	5MA ANALOG OR 20MA DIGITAL
	DIGITAL OUTPUT	$15 \mathrm{~V} \pm 20 \%$	20MA
SK 5X5E / S 1-4	INTERNAL (OUTPUT)	```5V \pm20% 10V 18...30V CORRESPONDING TO EXTERNAL CONTROL VOLTAGE```	250MA 5MA, REFERENCE VOLTAGE FOR AN EXTERNAL POTENTIOMETER 150MA TO SUPPLY THE DIGITAL INPUTS OR A 10-30V INCREMENTAL ENCODER
	ANALOGUE OUTPUT	0...10V	5MA ANALOG OR 20MA DIGITAL
	DIGITAL OUTPUT	18...30V CORRESPONDING TO EXTERNAL CONTROL VOLTAGE	20MA
	EXTERNAL (SUPPLY)	18...30V	800MA MIN. FOR THE SUPPLY OF THE FREQUENCY INVERTER CONTROL UNIT
SK 5X5E / S 5-6	INTERNAL (OUTPUT)	$\begin{aligned} & 5 \mathrm{~V} \pm 20 \% \\ & 10 \mathrm{~V} \\ & 24 \mathrm{~V} \pm 25 \% \end{aligned}$	250MA 5MA, REFERENCE VOLTAGE FOR AN EXTERNAL POTENTIOMETER 200MA TO SUPPLY THE DIGITAL INPUTS OR A 10-30V INCREMENTAL ENCODER
	ANALOGUE OUTPUT	0...10V	5MA ANALOG OR 20MA DIGITAL
	DIGITAL OUTPUT	24 V 土 25%	200MA
	EXTERNAL (SUPPLY)	24V...30V	1,000MA MIN. FOR THE SUPPLY OF THE FREQUENCY INVERTER CONTROL UNIT

NOTE

GND/OV is a common reference potential for analogue and digital inputs.
$5 \mathrm{~V} / 15 \mathrm{~V}(24 \mathrm{~V})$ can be collected by several terminals if required. For Sizes 1-4, the output currents must not exceed $250 \mathrm{~mA} / 150 \mathrm{~mA}(5 \mathrm{~V} / 15 \mathrm{~V}$) For Sizes $5-6$ the limiting values are $250 \mathrm{~mA} / 200 \mathrm{~mA}$.

2.12.1 Terminal blocks

Size 1 to 4 devices (S 1 -4)

X7: additional digital inputs and outputs
only with SK 52x/53xE

NOTE:

AIN2 - upper DIP Switch
AIN1 - lower DIP Switch

X4: analog inputs and outputs

$$
+10 \mathrm{~V} \text { max. } 5 \mathrm{~mA}
$$ $0 . . .10 \mathrm{~V}$ or $0 / 4 \ldots 20 \mathrm{~mA}$

X5: digital inputs and voltage supply
$\mathrm{R}_{\mathrm{i} \text { DIN }}$ approx. $4.5 \mathrm{k} \Omega$
for SK 5x0E
Terminal 42 internal
+15 V max. 150 mA
+5 V max. 250 mA

for SK 5x5E

Terminal 44 external $+18-30 \mathrm{Vmin} .800 \mathrm{~mA}$

X6: Incremental encoder input
only with SK 52x/53xE
Incremental encoder, e.g.: 10-30V, TTL, RS422

2048 Imp./Rpm.
Note: 5V encoders should not be used.

Size 5 to 6 devices (S 5-6)

2.12.2 Details of the SK 5x0E control connections

Terminal X5:42 (VO15V), internal 15 V control voltage! Terminal 42 . Here the frequency inverter provides the control voltage.

| Terminal | Function
 [factory setting] | Data | Description / wiring suggestion | Parameter |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Terminal block X3 (See also Chap. 2.12) | | | | |

Terminal		Function	Data	Description / wiring suggestion	Parameter
Terminal block X5			For SK 5x0E, internal 15V supply		
21	DIN1	digital input 1 [ON right]	7.5... $30 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}=6.1 \mathrm{k} \Omega$	Each digital input has a reaction time of $1-2 \mathrm{~ms}$.	P420
22	DIN2	digital input 2 [ON left]			P421
23	DIN3	digital input 3 [parameter set bit0]		motor - PTC Connection with external $7,5-30 \mathrm{~V}$:	P422
24	DIN4	digital input 4 [fixed frequency 1, P429]			P423
25	DIN5	digital input 5 [no function]	$2.5 \ldots 30 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}=2.2 \mathrm{k} \Omega$, only this input is suitable for evaluation of the thermistor with 5 V	NOTE: For the motor thermistor (DIN5) P424 = 13 must be set.	P424
42	VO 15V	15 V supply voltage	$15 \mathrm{~V} \pm 20 \%$	Supply voltage provided by the freequency inverter for connection to the digital inputs or the supply of a 10 30 V encoder.	
40	GND /OV	Reference potential for digital signals	OV digital	Reference potential	
	VO 5V	5 V supply voltage	$5 \mathrm{~V} \pm 20 \%$	Voltage supply for motor-PTC	

Terminal		Function [factory setting]	Data	Description / wiring suggestion	Parameter
Terminal block X6 (only SK 520/530E)					
	GND /OV	Reference potential for digital signals	OV digital	The incremental encoder input can be used for the exact regualtion of speed of rotation, additional set point functions or positioning. An encoder system with $10-30 \mathrm{~V}$ supply voltage must be used in order to compensate for voltage drop in long cable connections. Note: Encoders with 5V supply are not suitable in order to set up a system which operates reliably.	
	ENCA+	Track A	TTL, RS422 500...8192Imp./Rpm.		$\begin{gathered} \text { P300 } \\ \ldots . . P 327 \end{gathered}$
	ENCA-	Track A inverse			
	ENCB+	Track B			
	ENCB-	Track B inverse			
Terminal block X7 (only SK 520/530E))					
	RS485 +	Data cable RS485	Baudrate 9600...38400Baud Terminal resistance $\mathrm{R}=120 \Omega$	BUS connection parallel to RS485 on RJ12 plug NOTE: The terminal resistance of DIP switch 1 (see RJ12/RJ45) can also be used for KI. 73/74.	$\begin{gathered} \text { P502 } \\ \text {...P513 } \end{gathered}$
	RS485 -				
	DIN6	digital input 6 [no function]	7.5...30V, $\mathrm{R}_{\mathrm{i}}=3.3 \mathrm{k} \Omega$	As described for terminal block X5, DIN1 to DIN5. Not suitable for the evaluation of a motor thermistor.	P425
	DIN7	digital input 7 [no function]			P470
	DOUT1	Output 3 [no function]	digital output 15 V , max. 20 mA max. 100k Ω load	For evaluation in a control system. The scope of functions corresponds to the relay (P434/441).	$\begin{gathered} \text { P450 } \\ \text {...P452 } \end{gathered}$
7	DOUT2	Output 4 [no function]			$\begin{gathered} \text { P455 } \\ \text {...P457 } \end{gathered}$
	VO 15V	15 V supply voltage	$15 \mathrm{~V} \pm 20 \%$	Voltage supply for connection to the digital inputs or the supply of a $10-30 \mathrm{~V}$ encoder	
	GND /OV	Reference potential for digital signals	OV digital	Reference potential	
Terminal block X8 (only SK 510/511/530E)					
	VO_S 15V	Supply voltage	$15 \mathrm{~V} \pm 20 \%$	When setting-up without using a safety function, wire directly to V_IS 24 V .	$\begin{aligned} & \text { P420 } \\ & . . P 426, \\ & \text { P470 } \end{aligned}$
	VO_S OV	Reference potential			
	VI_S OV	Reference potential	$24 \mathrm{~V} \pm 25 \%, 100 \mathrm{~mA}$ Refer to technical data!	Fail-safe input	
	VI_S 24 V	Input safe pulse block			

Terminal	Function [factory setting]	Data	Description / wiring suggestion	Parameter
Plug block X11 (1x RJ12), RS485/RS232 Note: Coupling of two frequency inverters via the RJ12 socket must only be made via the USS BUS (RS485). Care must be taken that no connection to the data cable is possible via RS232, in order to prevent damage to this interface.				
1 RS485 A 2 RS485 B	Data cable RS485	Baudrate 9600...38400Baud Terminal resistance $R=120 \Omega$ DIP 1 (see below)	RJ12: Pin No. 1 ... 6	P502...P513
3 GND	Reference potential for Bus signals	OV digital		
4232 TXD	Data cable RS232	Baudrate 9600...38400Baud		
$5 \quad 232 \mathrm{RXD}$				
$6+5 \mathrm{~V}$	internal 5 V supply voltage	$5 \mathrm{~V} \pm 20 \%$		
optional	Adapter cable RJ12 to SUB-D9 ... for direct connection to a PC with NORD CON	Length 3 m Assignments of the SUB-D9 plug socket:		
DIP switches 1/2 (top side of SK $5 \times 0 \mathrm{E}$)				
		Plug designation	X11 X10	X9
DIP switch 1	Terminal resistor for RS485 interface (RJ12); ON = switched in			ANopen
DIP switch 2	Terminal resistor for CAN/CANopen interface (RJ12); ON = switched in			
			RS232/485 DIP CAN /C	
Plug block X9 and X10 (2x RJ45), CAN/CANopen (only 511E/520E/530E)				
1 CAN_H	CAN/CANopen signal	Baudrate ...500kBaud RJ45 sockets are connected in parallel internally.		P502...P515
2 CAN_L				
3 CAN_GND	CAN GND			
4 nc	No function	Terminal resistance R=120 DIP 2 (see below) NOTE: To operate CANbus/CANopen the interface must be externally supplied with 24 V (capacity 30 mA).		
5 nc				
6 CAN_SHD	Cable shield		NOTE: For SK 53xE frequency inverters this CANopen interface can	
7 CAN_GND	GND/0V	NOTE: Further details about the connection can be found in Chapter 2.11 RJ45 WAGO connection module.	be used for the evaluation of an absolute value encoder. Further details	
8 CAN_24V	External 24V DC supply voltage		Recommendation: Provide strain relief (e.g. with EMC Kit)	

2.12.3 Details of the $\operatorname{SK} 5 \times 5 E$ control connections

Size 1-4:

Terminal X5:44 (VI24V): Control voltage 24 V external! The frequency inverter must be provided with an external 24 V supply.

Size 5-6:
Terminal X5:44 (VO24V): Control voltage 24 V internal! Here, the frequency inverter provides the power supply, which can either be supplied from the internal low voltage generator or optionally via the terminals X12:44/X12:40.

Terminal	Function [factory setting]	Data	Description / wiring suggestion	Parameter

Terminal block X3 (See also Chap. 2.12)

$\begin{array}{\|l} 1 \\ 2 \end{array}$	$\begin{aligned} & \mathrm{K} 1.1 \\ & \mathrm{~K} 1.2 \end{aligned}$	Output 1 [Braking control]	Relay closing contact	Braking control	P434...
$\begin{array}{\|l} 3 \\ 4 \end{array}$	$\begin{aligned} & \text { K2.1 } \\ & \text { K2.2 } \end{aligned}$	Output 2 [Ready/Fault]	230 V AC / 24V DC, 2 A	Fault / Ready	P441...
Terminal block X4					
11	Vo 10V	10 V Reference voltage	10V, 5mA	The analogue input controls the output frequency of the frequency inverter.	
12	GND /OV	Reference potential for analogue signals	OV analogue		
14	AIN1	Analog input 1 [set point frequency]	$\mathrm{V}=0 \ldots 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}=30 \mathrm{k} \Omega \text {, }$ from size 5 and above, also $\begin{aligned} & -10 \mathrm{~V} \ldots+10 \mathrm{~V} \\ & \mathrm{I}=0 / 4 \ldots 20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250 \Omega, \end{aligned}$ can be switched over with DIP switch, reference voltage GND. For the use of digital functions 7.5...30V.	The possible digital functions are described in the parameters P420...P425.	P400...
16	AIN2	Analog input 2 [no function]			P405...
17	AOUT1	Analogue output [no function]	$0 . .10 \mathrm{~V}$ Reference potential GND max. load current: 5 mA analogue, 20 mA digital	Can be used for an external display or for further processing in a following machine. Datails of analogue/digital can be found in Parameter P418	P418/419

Terminal		Data	Description / wiring suggestion	Parameter
Terminal block X5		For SK 5x5E, external 24 V supply		
21 DIN1	digital input 1 [ON right]	7.5...30V, $\mathrm{R}_{\mathrm{i}}=6.1 \mathrm{k} \Omega$	Each digital input has a reaction time of $1-2 \mathrm{~ms}$.	P420
22 DIN2	digital input 2 [ON left]			P421
23 DIN3	digital input 3 [parameter set bit0]		$\left\lvert\, \begin{aligned} & \bigcirc=22 \\ & \bigcirc \\ & \bigcirc=23 \\ & -23 \end{aligned}\right.$	P422
24 DIN4	digital input 4 [fixed frequency 1, P429]			P423
25 DIN5	digital input 5 [no function]	Only S1 - S4 $2.5 \ldots 30 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}=2.2 \mathrm{k} \Omega$, only this input is suitable for evaluation of the thermistor with 5 V S5 and above thermistor to X13:T1 and T2!	NOTE: For the motor thermistor (DIN5) P424 = 13 must be set. (Only S1 - S4)	P424
$\frac{\mathrm{S} 1 \text { to } \mathrm{S} 4}{44 \quad \mathrm{VI} 24 \mathrm{~V}}$	24 V supply voltage	18...30V at least 800 mA (input)	External voltage supply provided by customer for the control unit of the frequency inverter. Is essential for the function of the frequency inverter. Also for the connection of the digital inputs or the supply of a $10-30 \mathrm{~V}$ incremental rotation encoder	
$\frac{\mathrm{S} 5 \text { to } \mathrm{S} 6}{44 \quad \mathrm{VO} 24 \mathrm{~V}}$	24 V supply voltage	$24 \mathrm{~V} \pm 25 \%$ max. 200mA (output)	Supply voltage provided by the frequency inverter for connection to the digital inputs or the supply of a 1030 V encoder.	
40 GND /OV	Reference potential for digital signals	OV digital	Reference potential	
41 VO 5 V	5 V supply voltage	$5 \mathrm{~V} \pm 20 \%$	Voltage supply for motor-PTC (only for S1 - S4)	

Terminal	Function [factory setting]	Data	Description / wiring suggestion	Parameter

Plug block X11 (1x RJ12), RS485/RS232
Note: Coupling of two frequency inverters via the RJ12 socket must only be made via the USS BUS (RS485). Care must be taken that no connection to the data cable is possible via RS232, in order to prevent damage to this interface.

Plug block X9 and X10 (2x RJ45), CAN/CANopen (only SK 515E and SK 535E)

1	CAN_H	CAN/CANopen signal	Baudrate ...500kBaud
2	CAN_L		
3	CAN_GND	CAN GND	2x RJ45 sockets are connected in parallel
4	nc	No function	internally.
5	nc		Terminal resistance $\mathrm{R}=120 \Omega$ DIP 2 (see below)
6	CAN_SHD	Cable shield	
7	CAN_GND	GND/0V	NOTE: To operate CANbus/CANopen the
8	CAN_24V	External 24V DC supply voltage	CANbus/CANopen the interface must be externally supplied with 24 V (capacity 30 mA).
			NOTE: Further details about the connection can be found in Chapter 2.14 RJ45 WAGO connection module.

	P502...P515
$\text { 2x RJ45: Pin No. } 1 \text {... } 8$ NOTE: For SK 53xE frequency inverters this CANopen interface can be used for the evaluation of an absolute value encoder. Further details can be found in Manual BU 0510. Recommendation: Provide strain relief (e.g. with EMC Kit)	

2.13 Colour and contact assignments for the incremental encoder.

Function	Cable colours, for incremental encoder	Assignment for SK 52xE/53xE
$15 \mathrm{~V}(/ 24 \mathrm{~V})$ supply	brown / green	X5:42/44 VO 15V (/ VI / VO 24V)
0V supply	white / green	X6:40 GND/0V
Track A	brown	X6:51 ENC A+
Track A inverse	green	X6:52 ENC A-
Track B	gray	X6:53 ENC B+
Track B inverse	pink	X6:54 ENC B-
Track 0	red	--
Track 0 inverse	black	--
Cable shield	connected to a large area of the frequency inverter housing or shielding angle	

NOTE: If there are deviations from the standard equipment (Type $5820.0 \mathrm{H} 40,10-30 \mathrm{~V}$ encoder, TTL/RS422) for the motors, please note the accompanying data sheet or consult your supplier.

RECOMMENDATION: For high reliability of operation, particularly with long connecting cables, an incremental rotation encoder for $10-30 \mathrm{~V}$ supply voltage must be used. An external 24 V or internal $15 \mathrm{~V}(/ 24 \mathrm{~V})$ voltage from the frequency inverter can be used as the voltage supply. 5 V encoders should not be used!

ATTENTION

The rotation of the incremental encoder must correspond to that of the motor. Therefore, depending on the rotation direction of the encoder to the motor (possibly reversed), a negative number must be set in parameter P301.

2.14 RJ45 WAGO connection module

This connection module can be used for simple cabling of the RJ45 connection functions (24 V voltage supply, CANopen absolute encoder, CANbus) with normal cables.

Pre-fabricated RJ45 patch cables are transferred with this adapter to spring terminals (1-8 + S).

To ensure correct shield connection and strain relief, the shield U-bolt must be used.

Supplier	Description	Article No.
WAGO Kontakttechnik GmbH	Ethernet connection module with CAGE-CLAMP connection Transfer module RJ-45	$289-175$
WAGO Kontakttechnik GmbH	Accessories: WAGO shield U-bolt	$790-108$
Alternative, complete connection module and shield U-bolt	Mat. Nr.	
Getriebebau NORD GmbH \& Co.KG	Connection module RJ45/Terminal	278910300

2.15 Setpoint card \pm 10V for NORDAC SK 500E

The analog inputs of series SK 500E frequency inverters size S1 to S4 can only process unipolar setpoints ($0 \ldots 10 \mathrm{~V} ; 0 / 420 \mathrm{~mA}$) with reference to GROUND.

If a bipolar setpoint (analog difference signal (-10V $\ldots+10 \mathrm{~V})$) is available, this must be converted to a $0 \ldots 10 \mathrm{~V}$ signal by means of a setpoint converter. In this case, the appropriate module is available from NORD. This module is suitable for snap-on rail-mounting and should be installed near to the frequency inverter in the control cabinet. For further details, please refer to the supplementary instructions for the setpoint converter.

Note: \quad Frequency inverters of size S5 and above can process both unipolar and bipolar setpoints by means of configuration with DIP switches.

Supplier	Designation	Part no.
Getriebebau NORD GmbH \& Co.KG	Setpoint converter $\pm 10 \mathrm{~V} \rightarrow 0 \ldots 10 \mathrm{~V}$	278910320

Dimensions

3 Display and operation

In the delivery condition (without technology unit) 2 LEDs (green/red) are visible externally. These indicate the current status of the device.
The green LED indicates that the mains voltage is present and operational, while a flashing code that increases in speed shows the degree of overload at the frequency inverter output.
The red LED signals actual error by flashing with a frequency which corresponds to the number code of the error (Section. 6).

3.1 Modular modules

By combining different modules for display, control and parameterisation, the NORDAC SK $5 x x E$ can be easily adapted to various requirements.
Alphanumerical display and operating modules can be used for simple start-up. For more complex tasks, various connections to a PC or an automation system can be selected.
The technology unit (Technology Unit, SK TU3-...) is connected externally to the frequency inverter and is therefore easy to access and replace at any time.

WARNING

Modules should not be inserted or removed unless the device is free of voltage. The slots may only be used for the applicable modules.
NOTE:
Installation of a technology unit separate from the frequency inverter is not possible. It must be connected directly to the frequency inverter.

Further detailed information can be found in the Options manuals.

- www.nord.com -

3.2 Technology unit overview

Module	Description	Data
SimpleBox SK CSX-0	For the commissioning, parameterisation, configuration and control of the frequency inverter. Storage of the parameters is not possible.	4-digit 7 segment LED display, single button operation Mat. No. 275900095
ControlBox SK TU3-CTR	For the commissioning, parameterisation, configuration and control of the frequency inverter. Storage of the parameters is possible by means of P550.	4-digit, 7-segment LED display, keyboard Mat. No. 2759000090
ParameterBox SK TU3-PAR	For the commissioning, parameterisation, configuration and control of the frequency inverter. Up to 5 parameter sets can be stored.	4 digit back-lit LCD display, keyboard Mat. No. 275900100
Profibus module SK TU3-PBR	This option enables control of the SK 5xxE via the Profibus DP serial port	Baud rate: 1.5 MBaud Connector: Sub-D9 Mat. No. 275900030
Profibus module SK TU3-PBR-24V	This option enables control of the SK 5xxE via the Profibus DP serial port	Baud rate: 12 MBaud Connector: Sub-D9 ext. 24V voltage supply, 2 pin connector Mat. No. 275900160
CANopen module SK TU3-CAO	This option enables control of the SK 5xxE via the CANbus serial port, using the CANopen protocol	Baud rate: up to 1 MBit/s Connector: Sub-D9 Mat. No. 275900075
DeviceNet module SK TU3-DEV	This option enables control of the SK 5xxE via the DeviceNet serial port using the DeviceNet protocol.	Baud rate: 500 KBit/s 5 pin screw connector Mat. No. 275900085
InterBus module SK TU3-IBS	This option enables control of the SK 5xxE via the InterBus serial port.	Baud rate: 500 kBit/s (2Mbit/s) Connector: $2 \times$ Sub-D9 Mat. No. 275900065
AS interface		
SK TU3-AS1	Actuator-sensor interface is a bus system for the lower field bus level, used for simple control tasks.	4 sensors / 2 actuators $5 / 8$ pin screw connector Mat. No. 275900170
PotentiometerBox SK TU3-POT	The Potentiometer Box is used for the direct control of the frequency inverter, without external components.	ON, OFF, R/L, 0...100\% Mat. No. 275900110

Installing the technology unit

The technology units must be installed as follows:

1. Switch off the mains.
2. Push the control terminals cover down slightly or remove.
3. Remove the blind cover by loosening the release on the lower edge and pulling off with an upward turning movement. If necessary, the fixing screw next to the release must be removed.
4. Hook the technology unit onto the upper edge and press in lightly until engaged. Ensure full contact with the connector strip and fasten with the screws if necessary (separate packet).
5. Close the control terminal cover again.

3.2.1 SimpleBox, SK CSX-0

This option is used as a simple parameterisation, display and control tool for the frequency inverter SK 5xxE. With this, even in active BUS operation, data can be read out and parameterisation made especially if the frequency inverter slot is occupied with a BUS unit.

Features

- 4-digit, 7-segment LED display
- Single button operation
- Display of the active parameter set and operating values

After the SimpleBox has been attached, the cable connectors plugged in and the mains has been switched on, horizontal lines appear in the 4-digit 7segment display. This display signals the operational readiness of the frequency inverter.

If a jog frequency value is pre-set in parameter P113, or a minimum frequency is pre-set in P104, the display flashes with this value.
If the frequency inverter is enabled, the display changes automatically to the operating value selected in parameter >Selection Display value< P001 (factory setting = current frequency).

The actual parameter set is shown by the 2 LEDs next to the display on the left in binary code.

Installation

The SimpleBox can be attached to any technology unit (SK TU3-...) or to the blind cover. To remove it, simply pull it off after the RJ12 connection has been detached (press in the latching lever on the RJ12 connector).

Connection

The SimpleBox is connected to the socket at the upper edge of the frequency inverter using the RJ12 connector/cable.

If necessary DIP switch 1 (left) can be used to activate a BUS connection resistor for the RS485 interface. This may be necessary if the frequency inverter is to be connected to an overriding control unit from a great distance.
Further details can be found in Section 2.12.1.

Top side of device

Functions of the SimpleBox:

| 7 Segment |
| :---: | :--- |
| LED display |\quad| When the frequency inverter is ready for operation any initial value (P104/P113 for keyboard |
| :--- |
| operation) is indicated by a flashing display. This frequency is immediately used on being enabled. |
| During operation, the currently set operating value (selection in P001) or an error code (Section 6) is |
| displayed. |
| During parameterisation, the parameter numbers or the parameter values are shown. |

Menu structure with the SimpleBox

NOTE: Some parameters P465, P475, P480...P483, P502, P510, P534, P701...P706, P707, P718, P740/741 and P748 have additional levels (arrays), in which further adjustments can be made, e.g.:

3.2.2 ControlBox, SK TU3-CTR

This option is used as a simple parameterisation, display and control tool for the frequency inverter SK 5xxE.

Features

- 4-digit, 7-segment LED display
- Direct control of a frequency inverter
- Display of the active parameter set and operating values
- Storage of a complete inverter data set (P550),
e.g. for transfer of data to other frequency inverters.

After the ControlBox has been attached, the cable connectors plugged in and the mains has been switched on, horizontal lines appear in the 4-digit 7-segment display. This display signals the operational readiness of the frequency inverter.
If a creep frequency value is pre-set in parameter P113, or a minimum frequency is pre-set in P104, the display flashes with this initial value.
If the frequency inverter is enabled, the display changes automatically to the operating value selected in parameter >Selection Display value $<$ P001 (factory setting = current frequency).

The actual parameter set in use is shown by the 2 LEDs next to the display on the left in binary code.
The digital frequency setpoint is factory set to 0 Hz . To check whether the motor is working, a
frequency setpoint must be entered with the
parameter > Jog frequency< (P113).

Settings should only be implemented by qualified personnel, strictly in accordance with the
warning and safety information.

ATTENTION : The motor may start immediately after pressing the START key

ControlBox functions:

\begin{tabular}{|c|c|}
\hline \& Switching on the frequency inverter. The frequency inverter is now enabled with the set jog frequency (P113). A preset minimum frequency (P104) may at least be provided. Parameter > Interface< P509 and P510 must \(=0\). \\
\hline (\& Switching off the frequency inverter. The output frequency is reduced to the absolute minimum frequency (P505) and the frequency inverter shuts down. \\
\hline \begin{tabular}{l}
7 Segment LED display \\
4-digit
\end{tabular} \& \begin{tabular}{l}
4 permanently displayed underscores (\(\qquad\)) indicate readiness for operation if there is no setpoint. If these underscores are flashing, the frequency inverter is not ready for operation (switch-on lock, e.g. function "safe pulse block"), or there is, or was, an error. This must first be rectified. \\
When the frequency inverter is ready for operation any initial value (P104/P113 for keyboard operation) is indicated by a flashing display. This frequency is immediately used on being enabled. \\
During operation, the currently set operating value (selection in P001) or an error code (Section 6) is displayed. \\
During parameterisation, the parameter numbers or the parameter values are shown.
\end{tabular} \\
\hline LEDs
1
2 \& \begin{tabular}{l}
The LEDs indicate the actual operating parameter set in the operating display (P000) and the actual parameter set being parameterised during parameterisation. Tin this case the display is coded in binary form.
1 \(=\mathrm{P} 1\) \\
2 \(=P 2\)

= P3

2

i^{-2}
\end{tabular}

\hline $$
6
$$ \& The motor rotation direction changes when this key is pressed. "Rotation to the left" is indicated by a minus sign. Attention! Take care when operating pumps. screw conveyors, ventilators, etc. Block the key with parameter P540.

\hline \& Press key to increase the frequency. During parameterisation, the parameter number or parameter value is increased

\hline \& Press the key to reduce the frequency. During parameterisation, the parameter number or parameter value is reduced.

\hline \[
6

\] \& | Press "ENTER" to store an altered parameter value, or to switch between parameter number or parameter value. |
| :--- |
| NOTE: If a changed value is not to be stored, the key can be used to exit the parameter without storing the change. |

\hline
\end{tabular}

Parameterisation with the ControlBox

The frequency inverter can only be controlled via the ControlBox, if it has not previously been enabled via the control terminals or via a serial interface (P509 = 0 and P510 $=0$). In addition, for this the parameter "PotentiometerBox Function" (P549) must not be set to function \{4\} "Frequency addition" or function \{5\} "Frequency subtraction".

If the "START" key is pressed, the frequency inverter in the operating display changes (selection P001). The frequency inverter supplies 0 Hz or a higher minimum frequency (P104) or jog frequency (P113) which has been set.

Parameter set display:

The LEDs indicate the actual operating parameter set in the operating display (P000) and the current parameter set being parameterised ($\neq \mathrm{P} 000$). There, the display appears in binary form.
The parameter set can also be changed during operation via the parameter P100 (control via ControlBox).

Frequency setpoint:

The current frequency setpoint depends on the setting in the parameters jog frequency (P 113) and minimum frequency (P104). This value can be altered during keyboard operation with the value keys and permanently stored in P113 as the jog frequency by pressing the ENTER key.

Quick stop:

By simultaneously pressing the STOP key \bigcirc and the "Change direction key" \cap, an quick stop can be initiated.

Frequency addition:

If the parameter "PotentiometerBox Function" (P549) has been set to function \{4\}"Frequency addition" or function $\{5\}$ "Frequency subtraction", as of software version 1.7 a setpoint can be added via the Control Box, even if enabling and other setpoints are provided from another source (control terminals, BUS).
However, after the drive unit has been shut down, this additive setpoint is reset to zero.
By pressing the ENTER key however, the set value is permanently stored in parameter P113 as the jog frequency, and continues to be available as a setpoint value on re-enabling after shutdown.

Parameterisation with the ControlBox

The parameterisation of the frequency inverter can be performed in the various operating states. All parameters can always be changed online. Switching to the parameter mode occurs in different ways depending upon the operating states and the enabling source.

1. If there is no enable (if necessary, press the STOP key ${ }^{\text {O }}$) via the ControlBox, control terminals or a serial interface, it is still possible to switch to the parameterisation mode directly from the operating value display with the value keys $\operatorname{\Delta r} \boldsymbol{\text { or }} \rightarrow \rho 0_{-} / \rho 7_{-}$
2. If an enable is present via the control terminals or a serial interface and the frequency inverter is producing an output frequency, it is also possible to switch to the parameterisation mode directly from the operating value display using the value keys $\boldsymbol{\Delta} \boldsymbol{\text { and }} \rightarrow \mathrm{PO}_{-} / \mathrm{P}_{\mathrm{Z}}$
3. If the inverter is enabled via the ControlBox (START key (1), the parameterisation mode can be reached by pressing the START and ENTER keys $(\perp$ simultaneously.
4. Switching back to the control mode is achieved by pressing the START key (I).

Exception: If the parameter "PotentiometerBox Function" (P549) has been set to function \{4\} "Frequency addition" or function $\{5\}$ "Frequency subtraction", as of software version 1.7 an online parameterisation via the ControlBox can no longer be carried out. i.e. the drive unit must be shut down for parameterisation via the ControlBox.

Changing parameter values

To access the parameter section, one of the value keys, © or must be pressed. The display changes to the menu group display $\mathrm{p}_{0_{-}} \ldots \mathrm{p}_{7}$. After pressing the ENTER key \oplus access to the menu group is obtained and the required parameter can be selected with the value keys.
All parameters are arranged in order in the individual menu groups in a continuous scroll pattern. It is therefore possible to scroll forwards and backwards within this section.
Each parameter has a parameter number $\rightarrow \rho_{X \times X}$. The significance and description of the parameters starts in Section 5 "Parameterisation"

NOTE: Some parameters P465, P475, P480...P483, P502, P510, P534, P701...P706, P707, P718, P740/741 and P748 have additional levels (arrays), in which further adjustments can be made, e.g.:

Menu structure with the SimpleBox

To change a parameter value, the ENTER key \doteq must be pressed when the applicable parameter number is displayed.
Changes can then be made using the VALUE keys or \odot and must be confirmed with \oplus to save them and leave the parameter.
As long as a changed value has not been confirmed by pressing ENTER, the value display will flash; this value has not yet been stored in the frequency inverter.
During parameter changes, the display does not blink so that the display is more legible.
If a change is not to be saved, the "DIRECTION" key \bigcirc can be pressed to leave the parameter.

3.2.3 ParameterBox, SK TU3-PAR

This option is for simple parameterisation and control of the frequency inverter, as well as the display of current operating settings and states.

Up to 5 data sets can be stored and managed, stored and transferred in this device. This enables an efficient start-up for serial applications.

NOTE: In order to be able to use the ParameterBox SK PAR-2H /-2E (external manual control / switching cabinet unit) on the SK $5 \times x E$, this must at least be equipped with software version 3.5 R1. To ensure reliable operation the SK PAR-2H /-2E must be connected to a stable 5 V supply.
(For further information, see Handbook BU 0040)

Features of the ParameterBox

- Illuminated, high resolution LCD graphics screen
- Large-screen display of individual operating parameters
- 6 language display
- Help text for error diagnosis
- 5 complete inverter data sets can be stored in the memory, loaded and processed
- For use as a display for various operating parameters
- Standardisation of individual operating parameters to display specific system data
- Direct control of a frequency inverter

Information from the ParameterBox

After lugging the ParameterBox onto the frequency inverter and switching on the mains for the first time, there is initially an enquiry as the menu language, German or English.
Then the ParameterBox automatically carried out a "bus scan", during which the connected frequency inverters are identified.
In the following display, the type of frequency inverter, its actual operating condition and the current status can be seen.
After the inverter has been enabled, the display mode changes to the 3 current operate values (frequency, voltage, current). The operating values displayed can be selected from a list of 19 possible values (in the >Display< / > Values< menu).
The digital frequency setpoint is factory set to OHz. To check whether the motor is working, a
frequency setpoint must be entered with the or
respective menu level >Parameterise<, >Base parameters< and a jog frequency via the respective parameter
>Jog frequency< (P113)

Settings should only be implemented by qualified personnel, strictly in accordance with the
warning and safety information.

ATTENTION : The motor may start immediately after pressing the START key $\quad 1$

Functions of the ParameterBox

LCD

Display | Graphic-capable, backlit LCD display for displaying operational values and parameters for the connected |
| :--- |
| frequency inverter and ParameterBox parameters. |

LCD-Display

Menu structure

The menu structure consists of various levels that are each arranged in a ring structure. The ENTER key moves the menu on to the next level. Simultaneous operation of the SELECTION keys moves the menu back a level.

\geq Display $\leq(P 11 x x), \geq$ Administer Parameters $\leq(P 12 x x)$ and \geq Options $\leq(P 13 x x)$ are purely ParameterBoxparameters and do not have direct influence on frequency inverter parameters.

Via the menu >Parametrerising< the frequency inverter structure can be accessed, if necessary after selection of the object, if frequency inverter data sets are already stored in the ParameterBox.

The description of the frequency inverter parameters is in Section 5 of this description.

Select language, short description

The following steps must be carried out to change the menu language used in the ParameterBox display. On switching on the ParameterBox for the first time, "German" or "English" will be offered for selection. The selection is made by pressing the selection keys (arrow R/L) and confirming with the ENTER key.
In the following, "German" was selected on switching on for the first time. After this selection the following displays should appear (varies depending upon output and options).

Language
English

500 E	$1.1 \mathrm{~kW} / 230 \mathrm{~V}$	1
$>$		NORDAC <
Frequency	Inverter	
ONLINE FU P1 READY		

Controlling the frequency inverter with the ParameterBox

The frequency inverter can only be completely controlled via the ParameterBox if the parameter >Interface< (P509) is set to the >Control terminal or Keyboard< function (=0) (factory setting) and the inverter is not enabled via the control terminal.

Note: If the frequency inverter is enabled in this mode, then the parameter set is used, which is selected for this frequency inverter in the Menu >Parameterisation< ... >Basic parameters< ... under Parameters >Parameter set<.

Attention: Following the START command, the frequency inverter may start up immediately with a preprogrammed frequency (minimum frequency P104 or jog frequency P113).

Frequency addition:

If the parameter "Potentiometer Box Function" (P549) has been set to function \{4\}"Frequency addition" or function $\{5\}$ "Frequency subtraction", as of software version 1.7 a setpoint can be added via the Control Box, even if enabling and other setpoints are provided from another source (control terminals, BUS).
To activate this function, the STOP key on the ParameterBox must also be pressed.
Pressing the value keys or increases or decreases the present frequency.
Pressing the STOP key or the ENTER key saves the additive value set via the value keys as the jog frequency in parameter P113.

Parameterising with the ParameterBox

The parameterising mode is entered by selecting the menu group >Parameterising< in level 1 of the ParameterBox and confirming this with the ENTER key. The parameter level of the connected frequency inverter is now visible.

Screen layout during parameterisation

If the setting of a parameter is changed, then the value flashes intermittently until confirmed with the ENTER key. In order to retain the factory settings for the parameter being edited, both VALUE keys must be operated simultaneously. Even in this case, the setting must be confirmed with the ENTER key in order for the change to be stored.

If the change is not to be stored, then pressing one of the SELECTION keys will call up the previously stored value and pressing a SELECTION key again will exit the parameter.

NOTE: The lowest line in the display is used to display the current status of the box and the frequency inverter being controlled.

NOTE: Some parameters P502, P701 to 706, P707, P718, P741/742 and P745/746 also have an arraylevel in which further settings can be made. The required array level must first be selected (see parameterisation, Section 5) and confirmed with ENTER. The required parameter setting can now be made.

3.2.4 ParameterBox parameters

The following main functions are assigned to the menu groups:

Menu group	No.	Master function
Display	$(\mathrm{P} 10 \mathrm{xx}):$	Selection of operating values and display layout
Parametrierung	$(\mathrm{P} 11 \mathrm{xx}):$	Programming of the connected inverter and all storage media
Parameter administration	$(\mathrm{P} 12 \mathrm{xx}):$	Copying and storage of complete parameter sets from storage media and inverters
Options	$(\mathrm{P} 14 \mathrm{xx}):$	Setting the ParameterBox functions and all automatic processes

Parameter display

Parameter	Setting value / Description / Note
P1001	Bus scan
Off / Start	A bus scan is initiated with this parameter. During this process a progress indicator is shown in the display.
After a bus scan, the display reverts to the basic menu. Parameter P1001 is reset to "Off". Depending on the result of this process, the ParameterBox goes into the "ONLINE" or "OFFLINE" operating mode.	
$\mathbf{P 1 0 0 2}$	Fl selection
FI and S1 ... S5	Selection of the current item to be parameterised/controlled. [FI]
The display and further operating actions refer to the item selected. In the inverter selection list, only those devices detected during the bus scan are shown. The current object appears in the status line.	

P1003	Display mode	
Value range:	Selection of the operating values display for the ParameterBox	
see right hand column	Standard	any 3 values next to each other
[Standard]	List	Any 3 values with units below each other
	Large display	1 value with unit
	ControlBox	1 value without unit

P1004

Value range:
see right hand column The value selected is placed in the first position of an internal list for the display value and is
[Actual frequency]

Values for display

Selection of a display value for the actual value display of the ParameterBox. then also used in the Large Display mode.

According to the setting in parameter 8P1003) up to 3 operating values can be selected for display. The selection is made in sequence, whereby the last selected value is inserted from the left or at the top of the display.
Parameter Setting value / Description / Note

Note: According to the version, the display or keyboard symbols vary between "OK" "ENTER" or "(ㅣ".

P1005	Standardisation factor
$-327.67 \ldots+327.67$	The first value on the display list is scaled with the standardisation factor. If this standardisation factor deviates from 1.00, the unit of the scaled value is no longer displayed.
$[1.00]$	

Parameterisation

Parameter	Setting value / Description / Note
P1101	Object selection
Fl and S1 \ldots S5	Selection of the object to be parameterised. $[\ldots]$
The ongoing parameterisation process relates to the object selected. Only the devices and storage objects recognised during the bus scan are available in the selection list. This parameter is not shown if only one device is recognised and there is no storage object available.	

Parameter administration

Parameter	Setting value / Description / Note
P1201	Copy - Source
$\begin{aligned} & \text { FI and S1 ... S5 } \\ & {[\ldots]} \end{aligned}$	Selection of the current source object to be copied. In the selection list, only the frequency inverters and storage objects detected during the bus scan are shown.
P1202	Copy - Target
$\begin{aligned} & \text { FI and S1 ... S5 } \\ & {[\ldots]} \end{aligned}$	Selection of current target object to copy. In the selection list, only the frequency inverters and storage objects detected during the bus scan are shown.
P1203	Copy - Start
Start / Off [Off]	This parameter triggers a process, whereby all the parameters selected in >Copy - Source< are transferred to the object specified in the >Copy - Target< parameter. If there is a possibility of overwriting data (e.g. for the transfer of data from a memory to a connected inverter) an additional confirmation window is displayed. The transfer starts after confirmation.
P1204	Load default values
$\begin{aligned} & \text { FI and S1 ... S5 } \\ & {[\ldots]} \end{aligned}$	In this parameter, the default settings are written to the parameters of the selected item. This function is particularly important when editing storage objects. It is only via this parameter that a hypothetical inverter can be loaded and processed with the ParameterBox.
P1205	Delete memory
$\begin{aligned} & \hline \text { S1 ... S5 } \\ & \text { [S1] } \end{aligned}$	In this parameter the data in the selected storage medium is deleted.

Options

Parameter	Setting value / Description / Note
P1301	Language
Value range: see right hand column [...]	Selection of languages for operation of the ParameterBox Available languages:
P1302	Operating mode
Value range: see right hand column [Online]	Selection of the operating mode for the NORDAC ParameterBox - Offline: The ParameterBox is operated autonomously. No PC or frequency inverter is connected. The storage objects of the ParameterBox can be parameterised and administrated. - Online: One or more inverters are located at the interface of the ParameterBox. The frequency inverter can be parameterised and controlled. When changing to the "ONLINE" operating mode, a bus scan is started automatically. - PC slave: Only possible with ParameterBox SK PAR-2H/ -2E or SK PAR-3H.
P1303	Automatic bus scan
On, Off [On]	Setting the switch-on characteristics. - Off No bus scan is carried out, the frequency inverters connected before the switch-off are located after switching on. If the connection configuration has been changed (e.g. a different inverter has been connected), error 223 is generated. - On A bus scan is automatically implemented when the ParameterBox is switched on.
P1304	Contrast
$\begin{aligned} & 0 \ldots 100 \% \\ & {[50]} \\ & \hline \end{aligned}$	Contrast setting of the ParameterBox display
P1305	Set password
$\begin{aligned} & 0 \ldots 9999 \\ & {[0]} \end{aligned}$	The user can set up a password in this parameter. If a value other than 0 has been entered in this parameter, then the settings of the ParameterBox or the parameters of the connected frequency inverter cannot be altered.
P1306	Box password
$\begin{aligned} & 0 \ldots 9999 \\ & {[0]} \end{aligned}$	If the password function is to be reset, the password selected in the >Set Password< parameter must be entered here. If the correct password is selected, all of the ParameterBox functions and the parameters of the connected frequency inverter can be used again. NOTE: In case the password is not known and parameterisation of the inverter needs to be carried out, please contact our Technical Support.
P1307	Reset Box parameter
Start, Off [Off]	With this parameter the ParameterBox can be reset to the default setting. All ParameterBox settings and the data in the storage media will be deleted.
P1308	NORDAC p-box
$\begin{aligned} & \text { Version } \ldots \mathrm{R} \ldots \\ & {[\ldots]} \end{aligned}$	Displays the software version of the ParameterBox. Please keep to hand.

3.2.5 ParameterBox error messages

Display Error number	Fault text in the Parameter Box	Cause - Remedy
Communication error		
200	Illegal parameter number	These error messages are due to EMC interferences or differing software versions of the participants.
201	Parameter value cannot be changed	
202	Parameter value out of range	
203	Faulty SUB Index	- Check the software version of the ParameterBox and that of the connected frequency inverter. - Check the cabling of all components, regarding possible EMC interference
204	No Array parameter	
205	Incorrect parameter type	
206	Incorrect response identifier USS interface	
207	Checksum error of USS interface	Communication between frequency inverter and ParameterBox is faulty (EMC), safe operation cannot be guaranteed. - Check the connection to the frequency inverter. Use a shielded cable between the devices. Route the BUS leads separately from the motor cables.
208	Incorrect status identifier USS interface	Communication between frequency inverter and ParameterBox is faulty (EMC), safe operation cannot be guaranteed.
		- Check the connection to the frequency inverter. Use a shielded cable between the devices. Route the BUS leads separately from the motor cables.
209	Inverter not responding	The ParameterBox is waiting for a response from the connected frequency inverter. The waiting time has elapsed without a response being received.

5. Check the connection to the frequency inverter. The settings of the USS parameters for the frequency inverter were changed during operation.

Identification errors		
220	Unknown device	Device ID not found. The connected inverter is not listed in the database of the ParameterBox; no communication can be established. - Please contact your Getriebebau Nord Representative.
221	Software version not recognised	Ine software of the connected frequency inverter is not listed in the ParameterBox database, no communication can be set up. recognised \quad Please contact your Getriebebau Nord Representative.
222	Bus configuration has changed	After restoring the last Bus configuration, a device is reported that is different from the one stored. This error can only occur if the parameter >Auto. Bus Scan< is set to OfF and another device has been connected to the ParameterBox. - Activate the automatic Bus scan function.
223	An unknown module has been detected in the frequency inverter (Customer interface / Special extension). - Please check the modules installed in the frequency inverter	
224	Device is not supported The connection to the inverter is blocked	The inverter type entered in the ParameterBox is not supported! The ParameterBox cannot be used with this frequency inverter.
225	Access to a device that is not online (previous Time Out error). $\mathbf{0}=\quad$ Carry out a bus scan via the parameter >Bus Scan< (P1001).	

Display Error number	Fault text in the Parameter Box	Cause - Remedy
ParameterBox operating error		
226	Source and target are different devices	Copying objects of different types (from / to different inverters) is not possible.
227	Source is empty	Copying of data from a deleted (empty) storage medium
228	This combination is not permitted	Target and source for the copying function are the same. The command cannot be carried out.
229	Object selected is empty	Parameterisation attempt of a deleted storage medium
230	Different software versions	Warning Copying objects with different software versions can lead to problems when transferring parameters.
231	Invalid password	Attempt to alter a parameter without a valid Box password being entered in parameter >Box Password< P 1306.
232	Bus scan only during operation: online	- A bus scan (search for a connected frequency inverter) is only possible when in ONLINE mode.
Warnings		
240	Overwrite data? Yes No	These warnings indicate that there is a possibly significant change which needs additional confirmation. Once the next procedure has been selected, it must be confirmed with the "ENTER" key.
241	Delete data? Yes No	
242	Move SW version? Next Cancel	
243	Move series? Next Cance	
242	Delete all data? Yes No	
Inverter control error		
250	This function is not enabled	The function requested is not enabled at the frequency inverter parameter interface. - Change the value of the parameter > Interface < of the connected inverter to the required function. More detailed information can be obtained from the operating instructions for the frequency inverter.
251	Control command was not successful	The control command cannot be implemented by the frequency inverter, as a higher priority function, e.g. Quick stop or an OFF signal to the control terminals of the frequency inverter is present.
252	Control is not possible offline	Call up of a control function in Offline mode. - Change the operating mode of the ParameterBox in the parameter >Operating Mode < P1302 to Online and repeat the action.
253	Error acknowledgement not successful	The acknowledgement of an error at the frequency inverter was not successful, the error message remains.
Error message from inverter		
Inverter error number	Inverter error text	A fault has occurred in the inverter with the number displayed. The inverter error number and text are displayed.

3.2.6 Profibus module, SK TU3-PBR, ...-24V

A large number of different automation devices can exchange data using Profibus. PLC's, PC's, operating and monitoring devices can all communicate via a uniform bus in serial bit mode.

Data exchange is specified in DIN 19245 Part 1 and 2 and application specific upgrades in Part 3 of this standard. Within the European field bus standardisation process, Profibus is integrated into the European field bus standard pr EN 50170.
The termination resistor for the last bus participant is located in the Profibus standard plug.
The module SK TU3-PBR does not require
 an external supply voltage, as it is supplied internally by the frequency inverter. Because of this, bus communication is only possible if the frequency inverter is connected to the mains, or for devices with an external low voltage supply (SK $5 \times 5 \mathrm{E}$), the 24 V control voltage is available.
The module SK TU3-BPR-24V requires an external 24 V supply, and can therefore be operated even if the frequency inverter is not connected to the mains, or the module is not plugged into the inverter.
Detailed information can be found in the operating instructions BU $\mathbf{0 0 2 0}$ or contact the supplier of the frequency inverter.

Profibus status LEDs	BR (green)	BUS ready
	BE (red)	BUS error

3.2.7 CANopen module, SK TU3-CAO

The CANopen interface on the NORDAC frequency inverter enables the parameterisation and control of the devices in accordance with standardised CANopen specifications
Up to 127 participants can be addressed on a single Bus. A termination resistor is integrated and can be switched on.
The transfer rate (10 kBaud and 500 kBaud) and the Bus addresses are set using rotary coding switches or the applicable parameters.

Detailed information can be found in the operating instructions BU 0060, or contact the supplier of the frequency inverter.

CANopen Status LEDs	CR (green)	CANopen RUN LED
	CE (red)	CANopen ERROR LED
Module status LEDs	DR (green)	Module status
	DE (red)	Module error

3.2.8 DeviceNet module, SK TU3-DEV

DeviceNet is an open communication profile for distributed industrial automation systems. It is based on the CANbus system.

Up to 64 participants can be linked to one Bus system.
The transfer rate (125. 250. $500 \mathrm{kBit} / \mathrm{s}$) and the Bus addresses are set using rotary coding switches or the applicable parameters.
Detailed information can be found in the operating instructions BU 0080, or contact the supplier of the frequency inverter.

DeviceNet status LEDs	MS (red/green)	Module status
	MS (red/green)	Mains (bus) status
Module status LEDs	DS (green)	Module status
	DE (red)	Module error

3.2.9 InterBus module, SK TU3-IBS

With InterBus up to 256 participants with different automation devices can exchange data. PLC's, PC's, operating and monitoring devices can all communicate via a uniform bus in serial bit mode.
NORDAC frequency inverters are remote bus participants. The data width is variable (3 words; 5 words), at a baud rate of $500 \mathrm{kBit} / \mathrm{s}$ (optional $2 \mathrm{Mbit} / \mathrm{s}$). An additional termination resistor is not necessary as it is already integrated. Addressing is carried out automatically by means of the physical arrangement of the participants.
An external 24 V supply is required for uninterrupted Bus operation.
Detailed information can be found in the operating instructions BU $\mathbf{0 0 7 0}$, or contact the supplier of the frequency inverter.

Module status LEDs	ST (red/green)	Module error/ready
InterBus status LEDs	UL (green)	Supply voltage applied
	RC (green)	Remote Check, remote bus to previous InterBus device is OK.
	BA (green)	Bus Active, InterBus data are being exchanged (Bus running).
	RD (yellow)	Remotebus Disabled, remote bus to next InterBus device is switched off.
	TR (green)	Transmit, data is being transferred from/to participants

3.2.10 SK TU3-AS1, AS interface

The Actuator-Sensor-Interface (AS interface) is a bus system for the simple field bus level. The transmission principle is a single master system with cyclical polling. A maximum of 31 slaves (or 62 A/B slaves) can be operated on an up to 100 m long unshielded two-wire cable in any network structure (tree/line/star).
The AS interface cable (yellow) transmits data and energy while a second two-wire cable can be used for a small auxiliary voltage (24 V). Addressing is implemented via the master, which can also provide other management functions, or via a separate addressing device. The 4 bit reference data (per direction) are cyclically transmitted with an effective error protection at a maximum cycle time of 5 ms . Transmission of larger data volumes is also possible with some slave profiles (e.g. slave profile 7.4). The bus system is defined in the AS Interface Complete Specification.
Detailed information can be found in the operating instructions BU 0090, or contact the supplier of the frequency inverter.

Status LEDs	Device S/E (red/green)	Module status/error
	AS- Int. PWR/FLT (red/green)	Standard status display for AS interface slaves
Digital I/O LEDs	OUT $1 \ldots 2$ (yellow)	Status of the AS interface bits, which are received/transmitted from the Master.
	IN $1 \ldots 4$ (yellow)	
AS-i I/O LEDs	DI $1 \ldots 4$ (yellow)	
	DO $1 \ldots 4$ (yellow)	

3.2.11 PotentiometerBox, SK TU3-POT

The frequency inverter can be controlled directly from the device using the PotentiometerBox. No additional external components are required.
The motor can be started, stopped and the direction of rotation changed by means of the buttons. The LEDs indicate the status of the inverter.
The required setpoint value of the frequency is adjusted with the potentiometer after it has been enabled (green button).
If an inactive error of the frequency inverter is present (red LED flashing), this can be acknowledged by pressing the STOP key
Note: The PotentiometerBox must be activated via parameter P549 "PotentiometerBox Function" using the setting \{4\} "Frequency addition".

I/O key	START/STOP (green/red)	To enable or block the output signal.
Potentiometer	0...100\%	Sets the output frequency beween $\mathrm{f}_{\min }(\mathrm{P} 104)$ and $\mathrm{f}_{\max }(\mathrm{P} 105)$.
Red LED	off	- No error
	flashing	-- Inactive error
	on	-' Active error
Green LED	off	Frequency inverter switched off, enabled with rotation direction to the right
	flashing 1: briefly on, longer period off	Frequency inverter switched off, enabled with rotation direction to the left
	flashing 2: briefly on, briefly off	Inverter switched on with direction of rotation to the left
	on	${ }^{-}$- Inverter switched on with direction of rotation to the right

4 Commissioning

Once the voltage supply has been connected to the frequency inverter, it will be operational after a few moments. In this state, the frequency inverter can be set to the requirements of the application, i.e. it can be configured. A completely comprehensive description of all the parameters is set out in Section 5.
The connected motor may only be started after the parameters specific to the application in question have been set by qualified personnel.

ATTENTION

DANGER TO LIFE!

The frequency inverter is not equipped with a line master switch and is therefore always live when connected to the power supply. Live voltages may therefore be connected to a connected motor at standstill.

4.1 Factory settings

All frequency inverters supplied by Getriebebau NORD are pre-programmed with the default setting for standard applications with 4 pole standard motors (same voltage and power). For use with motors with other powers or number of poles, the data from the rating plate of the motor must be input into the parameters P201...P207 under the menu item >Motor data\ll

NOTE: All motor data can be pre-set using the parameter P200. After use of this function has been successful, this parameter is reset to $0=$ no change! The data is loaded automatically into parameters P201...P209 - and can be compared again with the data on the motor rating plate.

RECOMMENDATION: For the correct operation of the drive unit, it is necessary to input the motor data (rating plate) as precisely as possible. In particular, an automatic stator resistance measurement using parameter P220 is recommended.
In order to automatically determine the stator resistance, set P220 $=1$ and confirm by pressing "ENTER". The value calculated for the line resistance (dependent upon P207) will be saved in P208.

4.2 Minimum configuration of control connections

If the frequency inverter is to be controlled via the digital and analog inputs, this can be implemented immediately in the condition as delivered. Settings are not necessary for the moment.

Minimum circuitry

Basic parameters

If the current setting of the frequency inverter is not known, loading the default setting is recommended \rightarrow P523 = 1. The inverter is pre-programmed for standard applications in this configuration. If necessary, the following parameters can be adjusted with the optional SimpleBox SK CSX-0 or ControlBox TY3-CTR:

4.3 KTY84-130 Connection (software version 1.7 and above)

The current vector regulation of the SK 500E series can be further optimised by the use of a KTY84-130 temperature sensor $\left(R_{\operatorname{th}\left(0^{\circ} \mathrm{C}\right)}=500 \Omega, \mathrm{R}_{\mathrm{th}\left(100^{\circ} \mathrm{C}\right)}=1000 \Omega\right)$. In particular there is the advantage that after an intermediate mains switch-off during operation the temperature of the motor is measured directly and therefore the actual value is always available to the frequency inverter. With this, the regulator can always achieve an optimum precision of speed.

Connections (Analog input 2)

Parameter settings (Analog input 2)

The following parameters must be set for the function of the KTY84-130.

1. The motor data P201-P207 must be set according to the rating plate.
2. The motor stator resistance P208 is determined at $20^{\circ} \mathrm{C}$ with $\mathbf{P 2 2 0}=\mathbf{1}$.
3. Function analog input 2, P405=48 (Motor temperature)
4. The mode for analog input 2, $\mathbf{P 4 0 6 = 1}$ (negative temperatures are also measured)
5. Adjustment of analog input 2: $\mathbf{P 4 0 7 = 1 , 5 4 V}$ and $\mathbf{P 4 0 8 = 2 , 6 4 V}$ (for $\mathrm{R}_{\mathrm{V}}=2.7 \mathrm{kOhm}$)
6. Adjust time constants: $\mathbf{P 4 0 9 = 4 0 0 m s}$ (Filter time constant is a maximum)
7. Motor temperature control: P001=23 (Temperature display, operation display SK TU3-CTR / SK CSX-0

4.4 Frequency addition and subtraction via operating boxes

(Software version 1.7 and above)

If the parameter P549 (PotentiometerBox Function) is set to 4 "Frequency addition" or 5 "Frequency subtraction", a value can be added or subtracted via the value keys or $\boldsymbol{\nabla}$ with the ControlBox or the ParameterBox.
If the ENTER key $($ is confirmed, the value is saved in P113. The next time the device is started, the value will be added or subtracted immediately.
As soon as the inverter is enabled, the ControlBox switches to the operating display. With the ParameterBox, a change of value can only be made in the operating display. If the ControlBox is enabled, parameterisation is no longer possible. Enabling via the ControlBox or ParameterBox is also no longer possible in this mode, even if P509 $=0$ and P510 $=0$.
Note: In order to safely activate the ParameterBox in this mode, the STOP key must be pressed once.

5 Parameterisation

Every frequency inverter is factory-set for a motor of the same power. All parameters can be adjusted "online". There are four switchable parameter sets available during operation. As delivered, all parameters are visible; however, some can be hidden with parameter P003.

NOTE: As there are dependencies between parameters, it is possible for invalid internal data and operating faults to be generated briefly. Only the inactive or non-critical parameter sets should be adjusted during operation.

The individual parameters are combined in various parameter sets. The first digit of the parameter number indicates the assignment to a Menu Group.

Menu group	No.	Master function
Operating displays	(P0--):	For the selection of the physical units of the display value.
Basic parameters	(P1--):	Contain the basic inverter settings, e.g. switch on and switch off procedures and, along with the motor data, are sufficient for standard applications.
Motor data	(P2--):	Settings for the motor-specific data, important for ISD current control, and selection of characteristic curve during the setting of dynamic and static boost.
Control parameters	(P3--):	Settings for the control parameters (current controller, speed controller etc.) with speed feedback in SK 520E/53xE.
Control terminals with SK 520E/53xE)	(P4--):	Analog input and output scaling, specification of digital input and relay output functions, as well as PID controller parameters.
Additional parameters	(P5--):	Functions dealing with e.g. the interface, pulse frequency or error acknowledgement.
Positioning		
(only with SK 53xE)	(P6--):	Adjustment of the positioning function in SK 53xE. Additional information is contained in the manual BU 0510.
Information	(P7--):	Display of e.g. actual operating values, old error messages, equipment status reports or software version.
Array parameter:	$-\mathbf{- 0 1}$	Some parameters in these groups can be programmed and read in several levels (arrays). After the parameter is selected, the array level must also be selected.
$\mathbf{- x x}$		

NOTE: Parameter P523 can be used to load the factory settings for all parameters at any time. This can be helpful, e.g. during the commissioning of a frequency inverter whose parameters no longer correspond with the factory settings.

ATTENTION

All parameter settings will be lost, if P523= 1 is set and confirmed with "ENTER".
To safeguard the actual parameter settings, these can be transferred to the ControlBox (P550=1) or ParameterBox memories

Availability of the parameters

Due to certain configurations, the parameters are subject to certain conditions. The following tables (from Section. 5.1 onwards) list all parameters together with the particular information.

Array parameter display

Some parameters have the option of displaying settings and views in several levels (arrays). After the parameter is selected, the array level is displayed and must then also be selected.
If the ControlBox is used, the array level is shown by \square_{-01}. With the ParameterBox (picture on right) the selection options for the array level appear at the top left of the display.

For parameterisation with ControlBox SK TU3-CTR:

ParameterBox SK TU3-PAR

5.1 Operating display

Abbreviations used:
FI = Frequency inverter
SW = Software version, stored in P707.
$\mathbf{S}=$ Supervisor parameters are visible or hidden dependent on P003.

Parameter	Set value / Description / Note	Device	Supervisor	Parameter set
P000	Operating parameter display			
$0.01 \ldots 9999$	In the display of the SimpleBox (SK CSX-0) or the ControlBox (SK TU3-CTR, the operating value selected in parameter P001 is displayed online. Information about the operating status of the drive can be read out as required.			
P001	Select of display			

$0 \ldots 651=$ Actual frequency [Hz]: the current output frequency being supplied by the FI.
[0] $2=$ Rotation speed [1/min]: the current rotation speed as calculated by the FI.
3 = Set frequency [Hz]: the output frequency equivalent to the actual setpoint. This need not match the actual output frequency.
$4=$ Current [A]: the actual output current measured by the FI.
5 = Torque current [A]: the torque developing output current of the FI.
$6=$ Voltage [Vac]: the actual alternating voltage being output by the FI.
7 = Link voltage [Vdc]: the FI-internal DC voltage. Amongst other things, this depends on the level of the mains voltage.
$8=\boldsymbol{\operatorname { c o s }} \varphi$: the current calculated value of the power factor.
$9=$ Apparent power [kVA]: the current apparent power calculated by the FI.
$10=$ Effective power [kW]: the current effective power calculated by the FI.
$11=$ Torque [\%]: the current torque calculated by the FI.
$12=$ Field [\%]: the current field in the motor calculated by the FI.
$13=$ Operating hours: time that voltage is applied to the FI network.
$14=$ Operating hours enabled: time the FI is enabled.
$15=$ Analog input 1 [\%]: current value present at analog input 1 of the FI.
$16=$ Analog input 2 [\%]: current value present at analog input 2 of the FI.
$17=\ldots 18$ reserved for SK 530E \rightarrow BU 0510
$19=$ Heat sink temperature $\left[{ }^{\circ} \mathrm{C}\right]:$ current temperature of the FI heat sink.
$\mathbf{2 0}=$ Motor load [\%]: average motor load, based on the known motor data (P201...P209).
$21=$ Braking resistor load [\%]: average braking resistor load, based on the known resistance data (P556...P557).
$22=$ reserved
$23=$ Motor temperature, measured via KTY-84. Details in Section 4.3
$24=$... 29 reserved for SK 530E \rightarrow BU 0510
$30=$ Current nominal value MP-S [Hz]: current nominal value of the motor potentiometer function (saved) (P420...P426=71/72). The nominal value can be read out with this function or pre-set (without the drive running).
$31=\ldots 65$ reserved for $S K 530 E \rightarrow B U 0510$

Parameter	Set value / Description / Note	Device	Supervisor	Parameter set
P002	Display factor		S	
$\begin{aligned} & 0.01 \ldots 999.99 \\ & {[1.00]} \end{aligned}$	The selected operating value in parameter P001 >Select of display< is multiplied with the scaling factor in P000 and displayed in >Operating parameter display<. It is therefore possible to display system-specific operating such as e.g. the throughput quantity			
P003	Supervisor code			
$\begin{aligned} & 0 \ldots 9999 \\ & {[1]} \end{aligned}$	$0=$ The Supervisor parameters are not visible. $1=$ All parameters are visible. $2=$ Only the menu group $0>$ Operating display<($\mathrm{P} 001 \ldots \mathrm{P} 003$) is visible. $3=\ldots 999$, as for setting value 2.			

5.2 Basic parameters

Parameter	Set value / Description / Note	Device	Supervisor	Parameter set
P100	Parameter set		\mathbf{S}	
$0 \ldots 3$	Selection of the parameters sets to be parameterised. Four parameters sets are available. All $[0]$	parameter set-dependent parameters are identified by P.		
The selection of the operating parameter set is performed via a digital input or the Bus control. Switching can take place during operation (online).				

Setting	Digital input function [8]	Digital input function [17]	LEDs ControlBox
0 = Parameter set 1	LOW	LOW	$\begin{aligned} & { }^{\circ} 1 \\ & O_{2} \end{aligned}$
1 = Parameter set 2	HIGH	LOW	$\begin{gathered} \text { 嫁-1 } \\ 0_{2} \end{gathered}$
$2 \mathbf{2}$ Parameter set 3	LOW	HIGH	$\begin{gathered} 01 \\ =\theta_{1}^{\prime}=2 \end{gathered}$
3 = Parameter set 4	HIGH	HIGH	

If enabled via the keyboard (ControlBox, PotentiometerBox or ParameterBox), the operating parameter set will match the settings in P100.

| P101 Copy parameter set | | s | |
| :--- | :--- | :--- | :--- | :--- |

0 ... $4 \quad$ After confirmation with the ENTER key, a copy of the parameter set selected in P100 >Parameter set< is written to the parameter set dependent on the value selected here
$0=$ Do not copy
$1=$ Copies the active parameter set to parameter set 1
$\mathbf{2}=$ Copies the active parameter set to parameter set 2
3 = Copies the active parameter set to parameter set 3
$4=$ Copies the active parameter set to parameter set 4

Parameter	Set value / Description / Note	Device	Supervisor	Parameter set
P104	Minimum frequency			P
$0.0 \ldots 400.0 \mathrm{~Hz}$	The minimum frequency is the frequency supplied by the FI as soon as it is enabled and no $[0.0]$			

This frequency is undershot when
a. the drive is accelerated from standstill.
b. the FI is blocked. The frequency then reduces to the absolute minimum (P505) before it is blocked.
c. the FI is reversing. The reverse in the rotation field takes place at the absolute minimum frequency (P505).
This frequency can be continuously undershot if, during acceleration or braking, the function "Maintain frequency" (Function Digital input =9) is executed.

P105	Maximum frequency		P
$0.1 \ldots 400.0 \mathrm{~Hz}$	The frequency supplied by the FI after being enabled and once the maximum setpoint is present, e.g. analog setpoint as per P403, a correspondingly fixed frequency or maximum via the ControlBox.		
This frequency can only be overshot by the slip compensation (P212), the function "Maintain frequency" (function digital input = 9) or a change to another parameter set with lower maximum frequency.			

P106	Ramp smoothing		S
$0 \ldots 100 \%$	This parameter enables a smoothing of the acceleration and braking ramps. This is necessary for applications where gentle, but dynamic speed change is important.		
	Ramp smoothing is carried out for every setpoint change.		
The value to be set is based on the set acceleration and deceleration time, however values $<10 \%$ have no effect.			

The following then applies for the entire acceleration or deceleration time, including rounding:

$$
\begin{aligned}
& \mathrm{t}_{\text {tot ACCELERATIONTIME }}=\mathrm{t}_{\text {P102 }}+\mathrm{t}_{\text {P102 }} \cdot \frac{\mathrm{P} 106[\%]}{100 \%} \\
& \mathrm{t}_{\text {tot DECELERATIONTIME }}=\mathrm{t}_{\text {P103 }}+\mathrm{t}_{\text {P103 }} \cdot \frac{\mathrm{P} 106[\%]}{100 \%}
\end{aligned}
$$

Parameter	Set value / Description / Note		Device	Supervisor	Parameter set
P107	Brake reaction time				P
$\begin{aligned} & 0 \ldots 2.50 \mathrm{~s} \\ & {[0.00 \text {] }} \end{aligned}$	Electromagnetic brakes have a physically-dependent delayed reaction time when applied. This can cause a dropping of the load for lifting applications, as the brake only takes over the load after a delay.				
	This reaction time can be taken into account under parameter P107 (Braking control).				
	Within the adjustable application time, the FI supplies the set absolute minimum frequency (P505) and so prevents movement against the brake and load drop when stopping.				
	See also the parameter >Release time< P114				
	NOTE: For the		king (es unction 1 uld neve	ally for lifting ernal brake ess than 2.0 H	perations) an 34/441). The
	NOTE:	If a time >0 is set in P107 or P114, at the moment the FI is switched on, the level of the excitation current (field current) is checked. If no megnetising current is present, the FI remains in magnetising mode and the motor brake is not released.			
		In order to achieve a shut-down and an error message (E016) in this case, P539 must be set to 2 or 3 .			

Recommendation for applications:
Lifting equipment with brake, without speed

Parameter	Set value / Description / Note	Device	Supervisor	Parameter set
P108	Disconnection mode		S	P
$\begin{aligned} & 0 . . .12 \\ & {[1]} \end{aligned}$	This parameter determines the (controller enable \rightarrow low). $0=$ Voltage block: The ou an output frequency. In Immediately switching $1=$ Ramp: The current outp deceleration time, from 2 = Ramp with delay: as w extended, or for static conditions, this function power dissipation.	utput freq off imme is braked to an e ed in prop	y is reduced ly. The FI no by mechanica message. n to the rema operation the reased. Unde reduce brake	"Blocking" ger supplies ction. g ke ramp is rtain istance

NOTE: This function must not be programmed if defined deceleration is required, e.g. with lifting mechanisms.

3 = Immediate DC braking: The FI switches immediately to the preselected DC current (P109). This DC current is supplied for the remaining proportion of the >DC brake time< (P110). Depending on the relationship, actual output frequency to max. quency (P105), the >DC braking time < is shortened. The time taken for the motor to stop depends on the application. The time taken to stop depends on the mass inertia of the load and the DC current set (P109).
With this type of braking, no energy is returned to the FI; heat loss occurs mainly in the motor rotor.

4 = Constant braking distance: The brake ramp is delayed in starting if the equipment is not being driven at the maximum output frequency (P105). This results in an approximately similar braking distance for different frequencies.
NOTE: This function cannot be used as a positioning function. This function should not be combined with ramp smoothing (P106).

5 = Combined braking: Dependent on the actual link voltage, a high frequency voltage is switched to the basic frequency (linear characteristic curves only, P211 $=0$ and P212 = 0). The deceleration time is retained where possible (P103). \rightarrow additional motor warming!
$6=$ Quadratic ramp: The brake ramp does not follow a linear path, but rather a decreasing quadratic one.
$7=$ Quadratic ramp with delay: Combination of functions 2 and 6
8 = Quadratic combined braking: Combination of functions 5 and 6
9 = Constant acceleration power: Only applies in field weakening range! The drive is accelerated or braked using constant electrical power. The course of the ramps depends on the load.
$10=$ Distance calculator: Constant distance between current frequency / speed and the set minimum output frequency (P104).
$11=$ Constant acceleration power with delay: Combination of functions 2 and 9.
$12=$ Constant acceleration power with delay (as 11) with additional brake chopper support
13 = Ramp with switch-off delay As for -1- ramp, however, after enabling has been removed, the drive unit remains at the set absolute minimum frequency (P505) for the time set in parameter P110 before the brake is applied and the usual braking procedure comes into effect.
Application example: Re-positioning for crane control (Software version 1.7 RO or higher)

Parameter	Set value / Description / Note	Device	Supervisor	Parameter set
P109	DC brake current		S	P

$0 \ldots 250 \% \quad$ Current setting for the functions of DC current braking (P108 = 3) and combined braking (P108 = 5).
[100] The correct setting value depends on the mechanical load and the required deceleration time. A higher setting brings large loads to a standstill more quickly.

The 100% setting relates to a current value as stored in the >Nominal current< parameter P203.
NOTE: The amount of DC current $(0 \mathrm{~Hz})$ which the FI can supply is limited. For this value, plese refer to the table in Section 8.5.3, column: OHz. In the basic setting this limiting value is about 110%.

P110	Time DC brake on		\mathbf{S}
$0.00 \ldots 60.00 \mathrm{~s}$	The time during which the motor has the current selected in parameter $>$ DC brake current< applied to it during the DC braking functions (P108 = 3). Depending on the relationship, actual output frequency to max. quency (P105), the $>$ Time DC brake on< is shortened. The time starts running with the removal of the enable and can be interrupted by fresh enabling.		

$\mathbf{P 1 1 1}$	\mathbf{P} factor torque limit		\mathbf{S}	\mathbf{P}
25				

$25 \ldots 400 \%$ Directly affects the behaviour of the drive at torque limit. The basic setting of 100% is sufficient for
[100] most drive tasks.

If values are too high the drive tends to vibrate as it reaches the torque limit. If values are too low, the programmed torque limit can be exceeded.

$\mathbf{P 1 1 2}$	Torque current limit		\mathbf{S}	\mathbf{P}

$25 \ldots 400 \% / 401$ With this parameter, a limit value for the torque generating current can be set. This can prevent [401] mechanical overloading of the drive. It cannot provide any protection against mechanical obstruction (movement to stops). A slipping clutch which acts as a safety device must be provided.
The torque current limit can also be set over an infinite range of settings using an analog input. The maximum setpoint (compare adjustment 100\%, P403/P408) then corresponds to the value set in P112.

The limit value 20% of torque current cannot be undershot by a smaller analog setpoint ($\mathrm{P} 400 / 405=2$) (in servo mode with P300 = 1, not below 10%)!

401 = OFF means the switch-off of the torque current limit! This is also the basic setting for the FI.
Note: For lifting gear applications, a torque limit must not be used!

NOTES: Software version V1.7 R0 and higher:

The activation of the jog frequency via one of the digital inputs causes the remote control to be switched off in case of bus operation. In addition, any setpoint frequencies present are not taken into account.
Exception: analog setpoint values which are processed via the functions Frequency addition or Frequency subtraction.

Up to software version V1.6 R1:

Specified setpoints via the control terminals, e.g. jog frequency, fixed frequencies or analog setpoints, are generally added with the correct sign. The set maximum frequency (P105) cannot be exceeded, and the minimum frequency (P104) cannot be undershot.

Parameter	Set value / Description / Note	Device	Supervisor	$\begin{aligned} & \text { Parameter } \\ & \text { set } \end{aligned}$
P114	Brake ventilation time		S	P
$\begin{aligned} & 0 \ldots 2.50 \mathrm{~s} \\ & {[0.00]} \end{aligned}$	Electromagnetic brakes have a factors. This can lead to the m inverter to switch off with an ov This release time can be taken During the adjustable release thus preventing movement aga See also the parameter >Brake NOTE: If the brake ven application time.	during brake ter P114 e set ab setting exa " 0 ", the	e, which dep applied, whic king control te minimum e). 07 is the br	ds on physical will cause the uency (P505) release and

5.3 Motor / characteristic curve parameters

Parameter	Set value / Description / Note	Device	Supervisor	$\begin{gathered} \text { Parameter } \\ \text { set } \end{gathered}$
P200	Motor list			P
$\begin{aligned} & 0 \ldots 53 \\ & {[0]} \end{aligned}$	The factory settings for the motor data can be edited with this parameter. The factory setting in parameters P201...P209 is a 4-pole DS standard motor with the nominal FI power setting. By selecting one of the possible digits and pressing the ENTER key, all motor parameters (P201...P209) are adjusted to the selected standard power. The basis for the motor data is a 4pole DS standard motor			
	$0=$ No change to data $1=$ No motor: In this setting, the FI operates without current control, slip compensation and pre-magnetising time, and is therefore not recommended for motor applications. Possible applications are induction furnaces or other applications with coils and transformers. The following motor data is set here: $50.0 \mathrm{~Hz} / 1500 \mathrm{rpm} / 15.0 \mathrm{~A} / 400 \mathrm{~V} / 0.00 \mathrm{~kW} / \cos \varphi=0.90$ / Star / RS $0,01 \Omega$ / I IEMPTY 6.5A			

NOTE: As P200 returns to $=0$ after the input confirmation, the control of the set motor can be implemented via parameter P205.

P201	Nominal motor frequency		S	P
$10.0 \ldots 400.0 \mathrm{~Hz}$ [***	The motor nominal frequency determines the rev/f break point at which the FI supplies the nominal frequency (P204) at the output.			
P202	Nominal motor speed		S	P
$\begin{aligned} & 150 \ldots 24000 \mathrm{rpm} \\ & \text { ["**] } \end{aligned}$	The nominal motor speed is important for the correct calculation and control of the motor slip and the speed display (P001 = 1).			

[^1]

[^2]| Parameter | Set value / Description / Note | Device | Supervisor | Parameter set |
| :---: | :---: | :---: | :---: | :---: |
| P211 | Dynamic boost | | S | P |
| $\begin{aligned} & 0 \text {... } 150 \% \\ & {[100 \text {] }} \end{aligned}$ | The dynamic boost affects the torque generating current and is therefore a load-dependent parameter. The factory 100% setting is also sufficient for typical applications.
 Too high a value can lead to overcurrent in the FI. Under load therefore, the output voltage will be raised too sharply. Too low a value will lead to insufficient torque. | | | |
| P212 | Slip compensation | | S | P |
| $\begin{aligned} & 0 \ldots 150 \% \\ & {[100 \text {] }} \end{aligned}$ | The slip compensation increases the output frequency, dependent on load, to keep the DC asynchronous motor speed approximately constant.
 The factory setting of 100% is optimal when using DC asynchronous motors and correct motor data has been set.
 If several motors (different loads or outputs) are operated with one FI, the slip compensation P212 must be set to 0%. This rules out a negative influence. This is equally valid for synchronous motors that do not have slip due to their design. | | | |
| P213 | ISD control loop gain | | S | P |
| $\begin{aligned} & 25 \ldots 400 \% \\ & {[100]} \end{aligned}$ | This parameter influences the control dynamics of the FI current vector control (ISD control). Higher settings make the controller faster, lower settings slower.
 Dependent on application type, this parameter can be altered, e.g. to avoid unstable operation | | | |
| P214 | Torque precontrol | | S | P |
| $\begin{aligned} & -200 \ldots 200 \% \\ & {[0]} \end{aligned}$ | This function allows a value for function can be used in lifting ap
 NOTE: Motor torques (with torques (with rotati for the counter clo | quiremen load trans
 ntered w with a ne | be set in the co uring start-up positive sign, e sign. The re | roller. This
 nerator rse applies |
| P215 | Boost precontrol | | S | P |
| $\begin{aligned} & 0 \text {... } 200 \% \\ & \text { [} 0 \text {] } \end{aligned}$ | Only with linear characteristic cu
 For drives that require a high sta additional current during the sta parameter >Time boost precont
 All current and torque current lim deactivated during the boost lead | $212=0 \%$
 meter pro on time is
 n set (P1 | an option for ed and can b
 and P536, P537 | witching in an elected at
 are |
| P216 | Time boost precontrol | | S | P |
| $\begin{aligned} & 0.0 \ldots 10.0 \mathrm{~s} \\ & {[0]} \end{aligned}$ | Only with linear characteristic curve (P211 = 0\% and P212 = 0\%).
 Application time for increased starting current. | | | |

Parameter	Set value / Description / Note	Device	Supervisor	$\begin{aligned} & \text { Parameter } \\ & \text { set } \end{aligned}$
P217	Oscillation damping		S	P
$\begin{aligned} & 0 \text {... } 400 \% \\ & \text { [} 10 \text {] } \end{aligned}$ SW1.6 and above	With the oscillation damping, idling current harm measure of the damping power. For oscillation damping the oscillation compone a high pass filter. This is amplified by P217, inv The limit for the value switched is also proportio filter depends on P213. For higher values of P2 With a set value of 10% for P217, a maximum of this corresponds to $\pm 1.8 \mathrm{~Hz}$ The function is not active in "Servo mode, P300"	can be d tered out and switch P217. Th time con 45 Hz are	d. Parameter e torque curre the output fr constant for is lower. ched in. At 40	7 is a by means of ency. high pass in P217,
P218	Modulation depth		S	
$\begin{aligned} & 50 \ldots 110 \% \\ & {[100]} \end{aligned}$ from SW1.5 and above	This setting influences the maximum possible output voltage of the FI in relation to the mains voltage. Values $<100 \%$ reduce the voltage to values below that of the mains voltage if this is required for motors. Values $>100 \%$ increase the output voltage to the motor increased the harmonics in the current, which may cause swinging in some motors. Normally, 100\% should be set.			
P219	Automatic magnetizing adjustment		S	
$\begin{aligned} & 25 \ldots 100 \% / 101 \\ & {[100]} \end{aligned}$ SW1.6 and above	With this parameter, an automatic adjustment of P219 is a limiting value, to which the field in the As standard, the value is set to 100%, and there can be set. The reduction of the field is performed with a tim load the field is built up again with a time consta carried out so that the magnetisation current and that the motor is operated with "optimum efficien value is not intended. This function is intended for applications in whic pumps and fans). Its effect therefore replaces a load. NOTE: This must not be used for lifting or torque is required, as otherwise th of the motor on sudden changes of compensated by a disproportionat 101 = automatic, with the setting P219=101 an activated. The ISD controller then controller, which improves the slipp control tomes are considerably fas 100)	agnetizin can be r o reductio stant of a pprox. 300 rque cur n increas equired atic curve ations wh uld be ov because e current atic mag es with a alculation mpared to	the motor load d. possible. As x. 7.5 sec . On The reductio are approxima he field above only change t adapts the more rapid rent switch-o missing field ation current rdinate magn ecially at high Normal ISD c	an be made. imum, 25\% crease of of the field is y equal, so e setpoint lowly (e.g. age to the d-up of the or inversion uld have be troller is zing loads. The rol (P219 =

Parameter	Set value / Description / Note	Device	Supervisor	Parameter set
P2xx				

P2xx Control/characteristic curve parameters

Parameter	Set value / Description / Note	Device	Supervisor	Parameter set
P220	Parameter identification			P

... up to 240s The motor data is automatically determined by the FI with this parameter. In most cases this leads [0] to considerably better drive characteristics, as DC asynchronous motors are subject to manufacturing tolerances which are not documented on the rating plate.
The identification of all parameters takes some time. Do not switch off the mains voltage during this time. The identification can only be carried out in an "operative" condition. This must be particularly taken into account in BUS operation.

If unfavourable operating characteristics result, select a suitable motor in P200 or set the parameters P201 ... P208 manually.

$0=$ No identification

$1=$ Identification $\mathbf{R}_{\mathbf{s}}$: only the stator resistance (display in P208) is determined by multiple measurements.
$\mathbf{2}=$ Motor identification: all motor parameters (P202, P203, P206, P208, P209) are determined.
Procedure: a) The identification should be made with the motor cold. Warming up of the motor during operation is taken into account.
b) The FI must be in an "operative condition" For BUS operation, the Bus must be operating without error.
c) The motor power may only be one power level greater or 3 power levels lower than the nominal power of the FI.
d) The motor data should be set according to the rating plate or P200. However, at least the nominal frequency (P201), the nominal speed (P202), the voltage (P204), the power (P205) and the motor circuit (P207) should be known.
e) If the identification cannot be concluded successfully, the error message E019 is generated. See also Section 6, Error messages.
f) Reliable identification can be made with motor cables up 20 m in length.

NOTE: \quad After identification of parameters, P220 is again $=0$.
Care must be taken that the connection to the motor is not interrupted during the entire measuring process.

5.4 Control parameters

Only available in SK 520E/53xE with the use of an incremental encoder. Connection, see Section 2.13.

Parameter	Set value / Description / Note	Supervisor	$\begin{aligned} & \text { Parameter } \\ & \text { set } \end{aligned}$
P300	Servo mode		P
$\begin{aligned} & 0 \ldots 1 \\ & {[0]} \end{aligned}$	This parameter activates speed control with speed measurement via an incremental encoder. This leads to a very stable speed behaviour up to motor standstill. $\begin{aligned} & 0=\text { off } \\ & 1=\text { on } \end{aligned}$ NOTE: For correct function, an incremental encoder must be connected (see control connections, Section 2.13) and the correct pulse number must be entered in parameter P301.		
P301	Incremental encoder		
$\begin{aligned} & 0 . . .17 \\ & {[6]} \end{aligned}$	Input of the pulse-count per rota If the encoder rotation direction this can be compensated for by $0=500$ pulses $1=512$ pulses $2=1000$ pulses 3 = 1024 pulses $4=2000$ pulses $5=2048$ pulses $6=4096$ pulses $7=5000$ pulses $17=+8192$ pulses	g on installatio pulse numb	and wiring), 8... 16.

NOTE: P301 is important for the positioning control in SK 530E If an incremental encoder is used for positioning (P604=1), the setting of the pulse number is made here. (see manual BU 0510)

P310	Speed controller P	SK 520E and above	P
$0 \ldots 3200 \%$	P-component of the encoder (proportional amplification).		
$[100]$	Amplification factor, with which the speed difference is multiplied from the setpoint and actual frequency. A value of 100\% means that a speed difference of 10\% produces a setpoint of 10\%. Values that are too high can cause the output speed to oscillate.		
P311	Speed controller I	SK 520E and above	

$0 \ldots 800 \% / \mathrm{ms} \quad$ I-component of the encoder (Integration component).
[20] The integration component of the controller completely eliminates any control deviation. The value indicates how large the setpoint change is per ms. Values that are too small cause the controller to slow down (reset time is too long).

Parameter	Set value I Description / Note	Device	Supervisor	$\begin{aligned} & \text { Parameter } \\ & \text { set } \end{aligned}$
P312	Torque current controller P	SK 520E and above	S	P
$\begin{aligned} & 0 \ldots 800 \% \\ & {[200]} \end{aligned}$	Current controller for the torque current. The higher the current controller parameters are set, the more precisely the current setpoint is maintained. Excessively high values in P312 generally lead to high-frequency oscillations at low speeds; on the other hand, excessively high values in P313 generally produce low frequency oscillations across the whole speed range. If the value "Zero" is entered in P312 and P313, then the torque current control is switched off. In this case, only the motor model lead is used.			
P313	Torque current controller I	SK 520E and above	S	P
$\begin{aligned} & 0 \text {... } 800 \% / \mathrm{ms} \\ & \text { [} 125 \text {] } \end{aligned}$	I-component of the torque current controller. (See also P312 >Torque current controller P<)			
P314	Torque current controller limit	SK 520E and above	S	P
$\begin{aligned} & 0 \ldots 400 \mathrm{~V} \\ & {[400 \text {] }} \end{aligned}$	Determines the maximum voltage increase of the torque current controller. The higher the value, the greater the maximum effect that can be exercised by the torque current controller. Excessive values in P314 can specifically lead to instability during transition to the field weakening zone (see P320). The values for P314 and P317 should always be set roughly the same, so that the field and torque current controllers are balanced.			
P315	Field current controller P	SK 520E and above	S	P
$\begin{aligned} & 0 \text {... } 800 \% \\ & {[200 \text {] }} \end{aligned}$	Current controller for the field current. The higher the current controller parameters are set, the more precisely the current setpoint is maintained. Excessively high values for P315 generally lead to high frequency vibrations at low speeds. On the other hand, excessively high values in P316 generally produce low frequency vibrations across the whole speed range If the value "Zero" is entered in P315 and P316, then the field current controller is switched off. In this case, only the motor model lead is used.			
P316	Field current controller I	SK 520E and above	S	P
$\begin{aligned} & 0 \ldots 800 \% / \mathrm{ms} \\ & \text { [} 125 \text {] } \\ & \hline \end{aligned}$	I-component of the field current controller. See also P315 >Field current controller P<			
P317	Field current controller limit	SK 520E and above	S	P
$\begin{aligned} & 0 \text {... } 400 \mathrm{~V} \\ & {[400 \text {] }} \end{aligned}$	Determines the maximum voltage increase of the torque current controller. The higher the value, the greater is the maximum effect that can be exercised by the field current controller. Excessive values in P317 can specifically lead to instability during transition to the field reduction range (see P320). The values for P314 and P317 should always be set roughly the same, so that the field and torque current controllers are balanced.			
P318	Weak field control P	SK 520E and above	S	P
$\begin{aligned} & \hline 0 \ldots 800 \% \\ & {[150]} \end{aligned}$	The weak field control reduces the field setpoint when the synchronous speed is exceeded. Generally, the weak field control has no function; for this reason, the field reduction controller only needs to be set if speeds are set above the nominal motor speed. Excessive values for P318 / P319 will lead to controller oscillations. The field is not reduced sufficiently if the values are too small or during dynamic acceleration and/or delay times. The downstream current controller can no longer read the current setpoint.			
P319	Weak field control I	SK 520E and above	S	P
$\begin{aligned} & 0 . . .800 \% / \mathrm{ms} \\ & {[20 \text {] }} \end{aligned}$	Affects only the field reduction range, see	ld reduction c	troller $\mathrm{P}<$	

Parameter	Set value / Description / Note	Device	Supervisor	Parameter set
P320	Weak field control limit	SK 520E and above	S	P
$0 \ldots 110 \%$	The weak field limit determines at which speed / current the controller will begin to weaken the field. At a set value of 100\% the controller will begin to reduce the field at approximately the			
synchronous speed. If values much larger than the standard values have been set in P314 and/or P317, then the field weak limit should be correspondingly reduced, so that the control range is actually available to the current controller.				

P321	Speed control I brake off	SK 520E and above	S	P

$0 \ldots 4$	During brake ventilation time (P107/P114), the l-component of the rotation speed control is
[0]	increased. This leads to better load take-up, especially with vertical movements.

[0] $\mathbf{0}=\mathrm{P} 311 \times 1$

$$
\begin{array}{ll}
\mathbf{1}=\mathrm{P} 311 \times 2 & \mathbf{3}=\mathrm{P} 311 \times 8 \\
\mathbf{2}=\mathrm{P} 311 \times 4 & \mathbf{4}=\mathrm{P} 311 \times 16
\end{array}
$$

P325	Encoder function	SK 520E and above		

0 ... 4 The actual speed list value supplied by an incremental encoder to the FI can be used for various [0] functions in the FI.
$\mathbf{0}=$ Rotation speed measurement Servo mode: The actual motor speed list value is used for the FI servo mode. The ISD control cannot be switched off in this function.
$1=$ PID actual frequency value: The actual rotation speed of a system is used for rotation speed control. This function can also be used for controlling a motor with a linear characteristic curve. It is also possible to use an incremental encoder for speed control that is not mounted directly onto the motor. P413 - P416 determine the control.
$\mathbf{2}=$ Frequency addition: The rotation speed deduced is added to the current setpoint value.
3 = Frequency subtraction: The determined speed is subtracted from the actual setpoint.
$4=$ Maximum frequency: The maximum possible output frequency / speed is limited by the speed of the encoder.

P326	Encoder transformation ratio	SK 520E and above	
$0.01 \ldots 100.0$	If the incremental encoder is not mounted directly onto the motor shaft, then the respectively correct transformation ratio of motor speed to encoder speed must be set.		
\qquadP326 $=\frac{\text { motor speed }}{\text { encoder speed }}$			

Only when P325 = 1, 2, 3 or 4, therefore not in Servo mode (motor speed control)

P327	Slip error, speed control	SK 520E and above	
$0 \ldots 3000 \mathrm{rpm}$	The limit value for a permitted maximum slip error can be set. If this value is reached, the FI $[0]$	switches off and indicates error E013.1.	
	$0=$ OFF		
	Only when P325 $=0$, therefore in Servo mode (motor speed control)		

5.5 Control terminals

Parameter	Set value / Description / Note	Device	Supervisor	Parameter set		
P400	Analog input function 1		P			
$0 \ldots 82$	The FI analog input can be used for various functions. It must be noted that only one of the functions given below is possible at any time.					If, for example, an actual PID frequency is selected, the frequency setpoint cannot be an analog
:---						
signal. The setpoint can, e.g., be specified via a fixed frequency.						

Analog functions:

$\mathbf{0}=\mathbf{O f f}$, the analog input has no function. After the FI has been enabled via the control terminals, it will supply the set minimum frequency (P104).

1 = Set frequency, the given analog range (P402/P403) varies the output frequency between the set minimum and maximum frequencies (P104/P105).
$\mathbf{2}=$ Torque current limit, based on the set torque current limit (P112), this can be altered by means of an analog value. 100\% setpoint here corresponds to the set torque current limit P112. 20\% cannot be undershot (with P300=1, not below 10\%)!

3 = Actual PID frequency *, is required to build up a control loop. The analog input (actual value) is compared with the setpoint (e.g. fixed frequency). The output frequency is adjusted as far as possible until the actual value equals the setpoint. (see control variables P413...P415)
$4=$ Frequency addition **, the supplied frequency value is added to the setpoint.
$\mathbf{5}=$ Frequency subtraction**, the supplied frequency value is subtracted from the setpoint.
$6=$ Current limit, based on the set current limit (P536), this can be altered by means of an analog value.

7 = Maximum frequency, the maximum frequency of the FI is varied. 100% corresponds to the setting in parameter P411. 0\% corresponds to the setting in parameter P410. The values for the min/max output frequency (P104/P105) cannot be exceeded or undershot.
8 = Actual frequency PID limited *, like function 3, actual frequency PID, however the output frequency cannot fall below the programmed minimum frequency value in Parameter P104. (no change to rotation direction)
$9=$ Actual frequency PID monitored *, as function 3, actual frequency PID, however the FI switches the output frequency off when the minimum frequency P104 is reached.
$10=$ Servo mode torque, in servo mode P300 the motor torque can be set using this function. Here the encoder P300 is switched off and a torque control activated. The analog input is then the source of the setpoint value.
$11=$ Torque precontrol, function that enables a value for the anticipated torque requirement to be entered in the controller (interference factor switching). This function can be used to improve the load take-up of lift equipment with separate load detection.
$12=$ reserved
$13=$ Multiplication, the setpoint is multiplied with the analog value supplied. The analog value adjusted to 100% then corresponds to a multiplication factor of 1 .

Parameter	Set value / Description / Note	Device	Supervisor	Parameter set

$14=$ Actual value process controller *, activates the process controller, analog input 1 is connected to the actual value encoder (compensator, air can, flow volume meter, etc.). The mode ($0-10 \mathrm{~V}$ or $\mathbf{0} / 4-20 \mathrm{~mA}$) is set in P401.
$15=$ Setpoint process controller *, as function 14 , however the setpoint is specified (e.g. by a potentiometer). The actual value must be specified using another input.
$16=$ Lead process controller *, adds an adjustable additional setpoint after the process controller.
$46=$ Setpoint torque process controller
48 = Motor temperature measurement with KTY-84, details in section 4.3
*) further details regarding the process controller can be found in Section . 8.2 and P400
${ }^{* *}$) The limits of these values are set by the parameters >Minimum frequency auxiliary setpoints< P410 and $>$ Maximum frequency auxiliary setpoints $<$ P411.

Digital functions:

$21=$ Enabled right	$39=$ reserved
$22=$ Enabled left	$40=$ reserved
$23=$ Change rotation direction	$41=$ Fixed frequency 5
$24=$ Fixed frequency 1	$42=\ldots 45 / 47 / 49$ reserved SK 530E \rightarrow BU 0510
$25=$ Fixed frequency 2	$50=$ PID controller on/off
$26=$ Fixed frequency 3	$51=$ Enable right blocked
$27=$ Fixed frequency 4	$52=$ Enable left blocked
$28=$ reserved	53 = ... 66 reserved
29 = Hold frequency	67 = Increase motor poti jog frequency
$30=$ Block voltage	$68=$ Reduce motor poti jog frequency
$31=$ Quick stop	$69=$ reserved
$32=$ error acknowledgement	$70=$ Bit 0 fixed frequency array
33 = reserved	71 = Bit 1 fixed frequency array
34 = reserved	$72=$ Bit 2 fixed frequency array
$35=$ Jog frequency	$73=$ Bit 3 fixed frequency array
$36=$ Maintain frequency "Motorpoti"	$74=$ Bit 4 fixed frequency array
$37=$ reserved	$75=\ldots 82$ reserved for SK 530E \rightarrow BU 0510
$38=$ Watchdog	

A detailed description of the digital functions can be found after parameters P420 ... P425. The functions of the digital inputs are identical to the digital functions of the analog inputs.

Permissible voltage when using digital functions: 7.5...30V.
NOTE: The analog inputs with digital functions do not comply with EN61131-2 (Type 1 digital inputs) as the idling currents are too low.

Parameter	Set value / Description / Note	Device	Supervisor	Parameter set
P401	Mode analog input 1		S	
$0 \ldots 3$	$0=$M limited to 0-10V: An analog setpoint smaller than the programmed adjustment 0\% $[0]$ (P402) does not lead to undershooting of the programmed minimum frequency (P104).			
Therefore does not lead to any rotation direction reversal.				

$\mathbf{1 = 0 - 1 0 V}$: If a setpoint smaller than the programmed adjustment $0 \%(\mathrm{P} 402)$ is present, this can cause a change in direction rotation. This allows rotation direction reversal using a simple voltage source and potentiometer.
E.g. internal setpoint with rotation direction change: P402 $=5 \mathrm{~V}, \mathrm{P} 104=0 \mathrm{~Hz}$, Potentiometer $0-10 \mathrm{~V} \rightarrow$ Rotation direction change at 5 V in mid-range setting of the potentiometer.

During the reversing moment (hysteresis $= \pm$ P505), the drive stands still when the minimum frequency (P104) is smaller than the absolute minimum frequency (P505). A brake that is controlled by the FI will have entered the hysteresis range.
If the minimum frequency (P 104) is greater than the absolute minimum frequency (P505), the drive reverses when the minimum frequency is reached. In the hysteresis range \pm P104, the FI supplies the minimum frequency (P 104), the brake controlled by the Fl is not applied.
$2=0-10 \mathrm{~V}$ monitored: if the minimum adjusted setpoint (P402) is undershot by 10% of the difference value from P403 and P402, the FI output switches off. Once the setpoint is greater than [P402-(10\% * (P403-P402))], it will deliver an output signal again.

e.g. setpoint 4-20mA P402: Adjustment $0 \%=1 \mathrm{~V}$; P403: Adjustment $100 \%=5 \mathrm{~V} ;-10 \%$ corresponds to -0.4 V ; i.e. $1 \ldots . .5 \mathrm{~V}(4 \ldots 20 \mathrm{~mA})$ normal operating zone, $0.6 \ldots 1 \mathrm{~V}=$ minimum frequency setpoint, below $0.6 \mathrm{~V}(2.4 \mathrm{~mA})$ output switches off.
$\mathbf{3 =} \mathbf{- 1 0 V} \mathbf{- 1 0 V}$: If a setpoint smaller than the programmed adjustment 0\% (P402) is present, this can cause a change in direction rotation. This allows rotation direction reversal using a simple voltage source and potentiometer.
E.g. internal setpoint with rotation direction change: $\mathrm{P} 402=5 \mathrm{~V}, \mathrm{P} 104=0 \mathrm{~Hz}$, Potentiometer $0-10 \mathrm{~V} \rightarrow$ Rotation direction change at 5 V in mid-range setting of the potentiometer.

During the reversing moment (hysteresis $= \pm$ P505), the drive stands still when the minimum frequency (P104) is smaller than the absolute minimum frequency (P505). A brake that is controlled by the FI will not have entered the hysteresis range.

If the minimum frequency (P104) is greater than the absolute minimum frequency (P505), the drive reverses when the minimum frequency is reached. In the hysteresis range (P104, the FI supplies the minimum frequency \pm P104), the brake controlled by the FI does is not applied.

Parameter	Set value / Description / Note		Device	Supervisor	$\begin{gathered} \text { Parameter } \\ \text { set } \end{gathered}$
P402	Analog input	tment 1: 0\%		S	
$\begin{aligned} & -50.00 \ldots 50.00 \mathrm{~V} \\ & {[0.00 \text {] }} \end{aligned}$	This parameter sets function for the ana setpoint set via P10 Typical setpoints an $\begin{aligned} & 0-10 \mathrm{~V} \\ & 2-10 \mathrm{~V} \\ & 0-20 \mathrm{~mA} \\ & 4-20 \mathrm{~mA} \end{aligned}$	Itage that should co ut 1 . In the factory imum frequency<.	d with the etpoint) th a a-10 V m istance a	imum value o alue is equival ored) x. 250Ω) x. 250Ω)	e selected to the
P403	Analog input	tment 1: 100\%		S	
$\begin{aligned} & -50.00 \ldots 50.00 \mathrm{~V} \\ & \text { [} 10.00 \text {] } \end{aligned}$	This parameter sets function for the ana setpoint set via P10 Typical setpoints and $\begin{aligned} & 0-10 \mathrm{~V} \\ & 2-10 \mathrm{~V} \\ & 0-20 \mathrm{~mA} \\ & 4-20 \mathrm{~mA} \end{aligned}$	oltage that should co ut 1 . In the factory ximum frequency<.	d with the etpoint) 0-10 V istance sistance	ximum value lue is corresp itored) x. 250Ω) x. 250Ω)	he selected ds with the

P400 ... P403

P401 $=0 \rightarrow 0-10 \mathrm{~V}$ limited

P401 $=1 \rightarrow 0-10 \mathrm{~V}$ not limited

P404	Filter analog input 1		\mathbf{S}
$1 \ldots 400 \mathrm{~ms}$	Adjustable digital low-pass filter for the analog signal. Interference peaks are hidden, the reaction		
[100]			

| P405 Analog input function 2 | | | P |
| :--- | :--- | :--- | :--- | :---: |

Parameter	Set value / Description / Note	Device	Supervisor	Parameter set
P406	Analog input mode 2		S	
$\begin{aligned} & 0 \ldots 3 \\ & {[0]} \end{aligned}$	$\begin{aligned} & 0=\text { limited to } 0-10 \mathrm{~V} \\ & 1=0-10 \mathrm{~V} \\ & 2=0-10 \mathrm{~V} \text { monitored } \\ & 3=-10 \mathrm{~V}-10 \mathrm{~V} \end{aligned}$ This parameter is identical to P401. P402/403 change to P406/407.			
P407	Analog input adjustment 2: 0\%		S	
$\begin{aligned} & -50.00 \ldots 50.00 \mathrm{~V} \\ & {[0.00]} \end{aligned}$	This parameter is identical to P402.			
P408	Analog input adjustment 2: 100\%		S	
$\begin{aligned} & -50.00 \ldots 50.00 \mathrm{~V} \\ & \text { [} 10.00 \text {] } \end{aligned}$	This parameter is identical to P403.			
P409	Filter analog input 2		S	
$\begin{aligned} & 1 \ldots 400 \mathrm{~ms} \\ & {[100]} \\ & \hline \end{aligned}$	This parameter is identical to P404.			
P410	Minimum frequency auxiliary setpoints			P
$\begin{aligned} & -400.0 \ldots 400.0 \mathrm{~Hz} \\ & {[0.0 \text {] }} \end{aligned}$	The minimum frequency that can act on the setpoint via the auxiliary setpoints. Auxiliary setpoints are all frequencies that are additionally delivered for further functions in the Actual frequency PID Frequency addition Frequency subtraction Auxiliary setpoints via BUS Process controller Min. frequency above analog setpoint (potentiometer)			
P411	Maximum frequency auxiliary setpoints			P
$\begin{aligned} & -400.0 \ldots 400.0 \mathrm{~Hz} \\ & {[50.0 \text {] }} \end{aligned}$	The maximum frequency that can act on the setpoint via the auxiliary setpoints. Auxiliary setpoints are all frequencies that are additionally delivered for further functions in the FI: Actual frequency PID Frequency addition Frequency subtraction Auxiliary setpoints via BUS Process controller Max. frequency above analog setpoint (potentiometer)			
P412	Nominal value process controller		S	P
$\begin{aligned} & -10.0 \ldots 10.0 \mathrm{~V} \\ & {[5.0 \text {] }} \end{aligned}$	Fixed specification of a setpoint for the process controller that will only occasionally be altered. Only with P400 = $14 \ldots 16$ (Process controller). Further details can be found in Section 8.2			
P413	PID control P-component		S	P
$\begin{aligned} & 0.0 \ldots 400.0 \% \\ & {[10.0 \text {] }} \end{aligned}$	This parameter is only effective when the function PID actual frequency is selected. The P-component of the PID controller determines the frequency jump if there is a rule deviation based on the rule difference. For example: At a setting of P413 = 10\% and a rule difference of $50 \%, 5 \%$ is added to the actual setpoint.			
P414	PID control I-component		S	P
$\begin{aligned} & 0.0 \ldots 3000.0 \% \\ & {[10.0]} \end{aligned}$	This parameter is only effective when the function PID actual frequency is selected. The I-component of the PID controller determines the frequency change, dependent on time. Up to SW 1.5 the setting range was 0.00 to $300.00 \% / \mathrm{ms}$! This can cause incompatibilities in the transfer of data sets between Fls with different software versions.			

Parameter	Set value / Description / Note	Device	Supervisor	Parameter set
P415	PID control D-component		S	P

$0 \ldots 400.0 \% \mathrm{~ms} \quad$ This parameter is only effective when the function PID actual frequency is selected.
[1.0] If there is a rule deviation, the D-component of the PID controller determines the frequency change multiplied by time (\%ms).

If one of the analog inputs is set in the function actual value process controller, this parameter determines the controller limitation (\%) after the PI controller. For further details, see Section 8.2.

P416	Ramp time PI setpoint.		\mathbf{S}	\mathbf{P}
$0.00 \ldots 99.99 \mathrm{~s}$	This parameter is only effective when the function PID actual frequency is selected.			
$[2.00]$	Ramp for PI setpoint			

Fig.: Flow diagram for PID controller

P417	Offset analog output 1		S
$-10.0 \ldots 10.0 \mathrm{~V}$	In the analog output function an offset can be entered to simplify the processing of the analog signal in other equipment.		
$[0.0]$	If the analog output has been programmed with a digital function, then the difference between the switch-on point and the switch-off point can be set in this parameter (hysteresis).		

Parameter	Set value / Description / Note	Device	Supervisor	Parameter set
P418	Analog output function			P

0 ... 52
[0]

Analog functions (max. load: 5 mA analog, 20 mA digital):
An analog voltage ($0 \ldots+10$ Volt) can be taken from the control terminals (max. 5 mA). Various functions are available, whereby:

0 Volt analog voltage always corresponds to 0% of the selected value.
10 V always corresponds to the motor nominal values (unless otherwise stated) multiplied by the P419 standardisation factor, e.g.:

$$
\Rightarrow 10 \text { Volt }=\frac{\text { motor nominal value } \cdot \mathrm{P} 419}{100 \%}
$$

$0=$ No function, no output signal at the terminals.
$1=$ Actual frequency, the analog voltage is proportional to the FI output frequency.
$2=$ Actual speed, this is the synchronous speed calculated by the FI based on the existing setpoint. Load-dependent speed fluctuations are not taken into account. If Servo mode is being used, the measured speed will be output via this function.
3 = Current, the effective value of the output current supplied by the FI.
$4=$ Torque current, displays the motor load torque calculated by the FI. $(100 \%=$ P112 $)$
$5=$ Voltage, the output voltage supplied by the FI.
$6=$ Link voltage, the DC voltage in the FI. This is not based on the nominal motor data. 10 V Volt, standardised at 100%, is equivalent to 450 V DC (230 V mains) or 850 Volt DC (480 V mains)!
7 = Value from P542, the analog output can be set using parameter P542 independently of the actual operating status of the FI For example, with Bus switching (parameter command) this function can supply an analog value from the FI, which is triggered by the control unit.
$8=$ Apparent power: the actual apparent power calculated by the FI.
$9=$ Effective power: the actual effective power calculated by the FI.
$10=$ Torque [\%]: the current torque calculated by the FI.
$11=$ Field [\%]: the current field in the motor calculated by the FI.
$12=$ Output frequency \pm, the analog voltage is proportional to the output frequency of the FI , whereby the zero point is shifted to 5 V . For rotation to the right, values between 5 V and 10 V are output, and for rotation to the left values between 5 V and 0 V .
$13=$ Motor rotation speed \pm, is the synchronic rotation speed calculated by the FI, based on the current setpoint, where the null point has been shifted to 5 V . For rotation to the right, values between 5 V and 10 V are output, and for rotation to the left values between 5 V and 0 V . If Servo mode is being used, the measured speed will be output via this function.
$14=$ Torque [\%] \pm, is the actual torque calculated by the FI, whereby the zero point is shifted to 5 V . For drive torques, values between 5 V and 10 V are output, and for generator torque, values between 5 V and 0 V .
$30=$ Setpoint frequency before frequency ramp, displays the frequency produced by any upstream controllers (ISD, PID, etc.). This is then the setpoint frequency for the power stage after it has been adjusted by the acceleration or braking ramp (P102, P103).
$31=$ Value via BUS, the analog output is controlled via a bus system. The process data is directly transferred (P546, P547, P548).
$33=$ Frequency from setpoint source, "Frequency from setpoint source" (SW 1.6 and above)

Parameter	Set value / Description / Note	Device	Supervisor	Parameter set

Digital functions:

All relay functions described in Parameter >Function Relay $1<$ P434 can also be transferred via the analog output. If a condition has been fulfilled, then there will be 10 V at the output terminals. Negation of the function can be set in the parameter >Norm. analog output< P419.

$\mathbf{1 5}=$ External brake	$\mathbf{2 8}=\ldots 29$ reserved
$\mathbf{1 6}=$ Inverter working	$\mathbf{3 2}=$ FI ready
$\mathbf{1 7}=$ Current limit	$\mathbf{3 4}=\ldots 43$ reserved for $S K 530 \rightarrow B U 0510$
$\mathbf{1 8}=$ Torque current limit	$\mathbf{4 4}=$ Bus In Bit 0
$\mathbf{1 9}=$ Frequency limit	$\mathbf{4 5}=$ Bus In Bit 1
$\mathbf{2 0}=$ Setpoint reached	$\mathbf{4 6}=$ Bus In Bit 2
$\mathbf{2 1}=$ Error	$\mathbf{4 7}=$ Bus In Bit 3
$\mathbf{2 2}=$ Warning	$\mathbf{4 8}=$ Bus In Bit 4
$\mathbf{2 3}=$ Overcurrent warning	$\mathbf{4 9}=$ Bus In Bit 5
$\mathbf{2 4}=$ Overtemperature warning motor	$\mathbf{5 0}=$ Bus In Bit 6
$\mathbf{2 5}=$ Torque current limit active	$\mathbf{5 1}=$ Bus In Bit 7
$\mathbf{2 6}=$ Value from P541, external control	$\mathbf{5 2}=$ Output via Bus (if P546, P547 or
$\mathbf{2 7}=$ Drive torque current limit	

| P419 Analog output standardisation | | | P |
| :--- | :---: | :---: | :---: | :---: |

$-500 \ldots 500 \% \quad$ Analog functions P418 (= 0 ... 6 and 8 ... 14, 30)

Using this parameter an adjustment can be made to the analog output for the selected operating zone. The maximum analog output (10 V) corresponds to the standardisation value of the appropriate selection.
If therefore, at a constant working point, this parameter is raised from 100% to 200%, the analog output voltage is halved. 10 Volt output signal then corresponds to twice the nominal value.
For negative values the logic is reversed. A setpoint value of 0% will then produce 10 V at the output and -100% will produce 0 V .
Digital functions P418 (= 15 ... 28, 34...52)
The switching threshold can be set using this parameter for the functions Current limit (= 17), Torque current limit (=18) and Frequency limit (=19). A value of 100% refers to the corresponding motor nominal value (see also P435).

With a negative value, the output function is output negated ($0 / 1 \rightarrow 1 / 0$).

Parameter	Set value / Description / Note	Device	Supervisor	$\begin{gathered} \text { Parameter } \\ \text { set } \end{gathered}$
P420	Digital input 1			
$\begin{aligned} & 0 \ldots 72 \\ & {[1]} \end{aligned}$	Enable right as factory setting, control terminal 21 (DIN1) Various functions can be programmed. These can be seen in the following table.			
P421	Digital input 2			
$0 \ldots 72$ [2]	Enable left as factory setting, control terminal 22 (DIN2) Various functions can be programmed. These can be seen in the following table.			
P422	Digital input 3			
$\begin{aligned} & 0 \ldots 72 \\ & \text { [} 8 \text {] } \\ & \hline \end{aligned}$	Parameter set switching Bit 0 as factory setting, control terminal 23 (DIN3) Various functions can be programmed. These can be seen in the following table.			
P423	Digital input 4			
$0 \ldots 72$ [4]	Fixed frequency 1 (P429) as factory setting, control terminal 24 (DIN4) Various functions can be programmed. These can be taken from the following table.			
P424	Digital input 5			
$\begin{aligned} & 0 \ldots 72 \\ & {[0]} \\ & \hline \end{aligned}$	No function as factory setting, control terminal 25 (DIN5) Various functions can be programmed. These can be seen in the following table.			
P425	Digital input 6	SK 520E and above		
$\begin{aligned} & 0 \ldots 72 \\ & {[0]} \\ & \hline \end{aligned}$	No function as factory setting, control terminal 26 (DIN6)			

Digital input $\mathbf{7}$ function $=\mathbf{P 4 7 0}$ (only SK 520/53xE), control terminal 27 (DIN7)

List of the possible functions of the digital inputs P420 ... P425, P470

Value	Function	Description	Signal
00	No function	Input switched off.	---
01	Enabled right	The FI delivers an output signal with the rotation field right if a positive setpoint is present. $0 \rightarrow 1$ Flank (P428 = 0)	High
02	Enabled left	The FI delivers an output signal with the rotation field left if a positive setpoint is present. $0 \rightarrow 1$ Flank (P428 = 0)	High
	If the drive is to start up automatically when the mains is switched on ($\mathrm{P} 428=1$) a permanent High level for enabling must be provided (connect control terminals 21-42). If the functions "Enabled right" and "Enabled left" are actuated simultaneously, the FI is blocked.		
03	Change rotation direction	Causes the rotation field to change direction, combined with Enable right or left.	High
04	Fixed frequency 1^{1}	The frequency from P429 is added to the actual setpoint value.	High
05	Fixed frequency 2^{1}	The frequency from P430 is added to the actual setpoint value.	High
06	Fixed frequency $3{ }^{1}$	The frequency from P431 is added to the actual setpoint value.	High
07	Fixed frequency 4^{1}	The frequency from P432 is added to the actual setpoint value.	High
	If several fixed frequencies are actuated at the same time, then they are added with the correct sign. In addition, the analog setpoint (P400) and possibly the minimum frequency (P104) are added.		
08	Parameter set switch Bit 0	Selection of the active parameter set 1... 4 (P100)	High
09	Hold frequency	During the acceleration or braking phase, a low level will cause the actual output frequency to be "held". A high level allows the ramp to proceed.	Low
10	Voltage block ${ }^{2}$	The FI output voltage is switched off; the motor runs down freely.	Low
11	Quick stop ${ }^{2}$	The FI reduces the frequency according to the programmed quick stop time (P426).	Low
12	Error acknowledgement ${ }^{2}$	Error acknowledgement with an external signal. If this function is not programmed, an error can also be acknowledged by a low enable setting (P506).	$\begin{aligned} & 0 \rightarrow 1 \\ & \text { Flank } \end{aligned}$
13	Thermistor input ${ }^{2}$	Analog evaluation of signal present. Switching threshold at approx. 2.5 V Switch-off delay $=2 \mathrm{sec}$, warning after 1 sec . NOTE: Function 13 can only be used with sizes $1-4$ via DIN 5, terminal 25 ! For sizes 5 - 6 there is a separate connection (X13:T1/T2), which cannot be deactivated. If the motor is equipped with a thermistor, both terminals must be bridged in order to deactivate the function (status as delivered).	level
14	Remote control ${ }^{2}$	With Bus system control, low level switches the control to control via control terminals.	High
15	Jog frequency ${ }^{1}$	The fixed frequency value can be adjusted using the HIGHER/LOWER and ENTER keys (P113), if control is via the ControlBox or ParameterBox.	High
16	Maintain frequency "Motorpoti"	As for setting 09, however, below the minimum frequency P104 and above the maximum frequency P105 the frequency is not maintained.	Low
17	Parameter set switch Bit 1	Selection of the active parameter set 1... 4 (P100)	High
18	Watchdog ${ }^{2}$	Input must see a high flank cyclically (P460); otherwise error E012 will cause a shutdown. Function starts with the 1st high flank.	$0 \rightarrow 1$ Flank
19	Setpoint 1 on/off	Analog input switch-on and switch-off $1 / 2$ (high = ON) The low signal sets the analog input to 0% which does not lead to	
20	Setpoint 2 on/off	shutdown when the minimum frequency (P104) > than the absolute minimum frequency (P505).	g
... continued on the next page			

Impulse input functions: 2...22kHz (only for DIN2 and DIN3 or 4)

For these functions the particular input evaluates the impulse frequency present. The frequency range 2 kHz to 22 kHz thereby covers the range of values from 0 to 100%. The inputs operate up to a maximum impulse frequency of 32 kHz . The voltage level may be between 15 V and 24 V and the switch-on cycle between 50 and 80%.

Value	Function	Description	Signal
26	Torque current limit ${ }^{2}$	Adjustable load limit, the output frequency is reduced when it is reached. $\rightarrow \mathrm{P} 112$	Impulse
27	Actual PID frequency ${ }^{23}$	Possible feedback of actual value for the PID controller	Impulse
28	Frequency addition ${ }^{23}$	Addition to other frequency setpoint values	Impulse
29	Frequency subtraction ${ }^{23}$	Subtraction from other frequency setpoint values	Impulse
33	Current limit ${ }^{2}$	Based on the set current limit (P536), this can be changed using the digital/analog input.	Impulse
34	Maximum frequency ${ }^{23}$	The maximum frequency of the Fl is set in the analog range. 100% corresponds to the setting in parameter P411. 0\% corresponds to the setting in parameter P410. The values for the min/max output frequency (P104/P105) cannot be exceeded or undershot.	Impulse
35	Actual frequency of PID controller limited ${ }^{23}$	Needed to build up a control loop. The digital/analog input (actual value) is compared with the setpoint (e.g. other analog input or fixed frequency). The output frequency is adjusted as far as possible until the actual value equals the setpoint. (see control variables P413-P416) The output frequency cannot fall below the programmed minimum frequency value in parameter P104. (No rotation direction change!)	Impulse
36	Actual frequency of PID controller monitored ${ }^{23}$	As function 35, >Actual frequency PID< but the FI switches the output frequency off when the >Minimum frequency< P 104 is reached.	Impulse
37	Torque servo mode ${ }^{2}$	The motor torque can be set or limited via this function in Servo mode.	Impulse
38	Torque precontrol ${ }^{2}$	Function that enables a value for the anticipated torque requirement to be entered in the controller (interference factor switching) This function can be used to improve the load takeup of lift equipment with separate load detection. \rightarrow P214	Impulse
39	Multiplication ${ }^{3}$	This factor multiplies the master setpoint value.	Impulse
40	Pl process controller actual value	As for $\mathrm{P} 400=14-16$ further details regarding the process controller can be found in Section 8.2	Impulse
41	Pl process controller setpoint		Impulse
42	PI process controller lead		Impulse
43	This function can Track A only be used for HTL the digital inputs 2 encoder (P421) and 4	A 24V HTL encoder can be connected to DIN 2 and DIN 4 in order to measure the speed. The maximum frequency at the DIN is limited to 10 kHz . Accordingly, a suitable encoder (low pulse number) or suitable mounting (slow speed) SHOULD BE USED. The direction of counting can be changed by exchanging the functions on the digital inputs. Further settings are in P461, P462, P463.	Impulse $<10 \mathrm{kHz}$
44	Only for SW 1.7 or higher and HW Track B CAA! HTL encoder		Impulse $<10 \mathrm{kHz}$
Also effective for Bus control (RS232, RS485, CANbus, CANopen, DeviceNet, Profibus, InterBus, AS-Interface)			
The limits of these values are set by the parameters >Minimum frequency auxiliary setpoints< P410 and >Maximum frequen auxiliary setpoints< P411.			

Parameter	Set value I Description / Note	Device	Supervisor	$\begin{gathered} \text { Parameter } \\ \text { set } \end{gathered}$
P426	Quick stop time			P
$\begin{aligned} & 0 \ldots .320 .00 \mathrm{~s} \\ & {[0.10]} \end{aligned}$	Setting of the stop time for the fast stop function that can be triggered either via a digital input, the bus control, the keyboard or automatically in case of a fault. Quick stop time is the time for the linear frequency decrease from the set maximum frequency (P105) to 0 Hz . If an actual setpoint $<100 \%$ is being used, the quick stop time is reduced correspondingly.			
P427	Quick stop on Error		S	
$\begin{aligned} & 0 \ldots 3 \\ & {[0]} \end{aligned}$	Activation of automatic quick stop following error $\mathbf{0}=\mathbf{O F F}$: Automatic quick stop following error is deactivated $1=$ Mains supply failure: Automatic quick stop following mains supply failure $2=$ Error: Automatic quick stop following fault 3 = Mains supply failure and error: Automatic quick stop following mains supply failure and error			
P428	Automatic starting		S	P
$\begin{aligned} & 0 \ldots 1 \\ & {[0]} \end{aligned}$	In the standard setting (P428 = 0 from "low \rightarrow high") at the applica In the setting On $\boldsymbol{\rightarrow} \mathbf{1}$ the FI reac controlled using the digital inputs In certain cases, the FI must star P428 = $\mathbf{1} \boldsymbol{\rightarrow}$ On can be set. If the cable jumper, the FI starts up imm	require his funct the mains ermanen	nk for enable only possible witched on. Thi tched on, or e	nal change Fl is means that ped with a
P429	Fixed frequency 1			P
$\begin{aligned} & -400 \ldots 400 \mathrm{~Hz} \\ & \text { [} 0 \text {] } \end{aligned}$	Following actuation via a digital in used as a setpoint. A negative se rotation direction P420 - P425, P If several fixed frequencies are a with the correct sign. This also ap setpoint (if P400 $=1$) or minimum The frequency limits $\left(P 104=f_{\text {min }}\right.$ If none of the digital inputs are pr signal leads to an enable. A positive a left enable.	of the FI use a dire e time, th ons with ot be ove ble (right corresp	or left), the fix change (based individual va frequency (dershot.), the simple o a right enab	equency is the Enable are added), analog frequency a negative to
P430	Fixed frequency 2			P
$\begin{aligned} & -400 \ldots 400 \mathrm{~Hz} \\ & \text { [} 0 \text {] } \end{aligned}$	Function description of parameter, see P429 >Fixed frequency $\mathbf{1 <}$			
P431	Fixed frequency 3			P
$\begin{aligned} & -400 \ldots 400 \mathrm{~Hz} \\ & \text { [} 0 \text {] } \\ & \hline \end{aligned}$	Function description of parameter, see P429 >Fixed frequency $\mathbf{1 <}$			
P432	Fixed frequency 4			P
$\begin{aligned} & -400 \ldots 400 \mathrm{~Hz} \\ & \text { [} 0 \text {] } \end{aligned}$	Function description of parameter, see P429 >Fixed frequency $\mathbf{1 <}$			
P433	Fixed frequency 5			P
$\begin{aligned} & -400 \ldots 400 \mathrm{~Hz} \\ & \text { [} 0 \text {] } \end{aligned}$	Function description of parameter, see P429 >Fixed frequency 1 <			

Parameter	Set value / Description / Note	Device	Supervisor	Parameter set
P434	Function output 1 (K1)			P

Control terminals 1/2: The settings 3 to 5 and 11 work with 10% hysteresis, i.e. the relay contact closes (fct. 11 opens) when the limit value is reached and opens (fct. 11 closes) when a 10\% smaller value is undershot. This behaviour can be inverted with a negative value in P435.

Setting / Function		Relay contact ... for limit value or function
		(see also P435)
$0=$	No function	open
$1 \text { = }$	External brake, to control a mechanical brake on the motor. The relay switches at a programmed absolute minimum frequency (P505). For typical brakes a setpoint delay of $0.2 \ldots 0.3$ seconds should be programmed. A mechanical brake can be directly AC switched. (Please note the technical specifications of the relay contacts)	Closes
	Inverter operating, the closed relay contact indicates voltage FI output ($\mathrm{U}-\mathrm{V}-\mathrm{W}$).	Closes
	Current limit, based on the setting of the motor rated current in P203. This value can be adjusted with the standardisation (P435).	Closes
	Torque current limit, based on motor data settings in P203 and P206. Signals a corresponding torque load on the motor. This value can be adjusted with the standardisation (P435).	Closes
	Frequency limit, based on motor nominal frequency setting in P201. This value can be adjusted with the standardisation (P435).	Closes
	Setpoint reached, indicates that the FI has completed the frequency increase or decrease. Setpoint frequency = actual frequency! From a difference of $1 \mathrm{~Hz} \rightarrow$ Setpoint value not achieved - contact opens.	Closes
	Error, general error message, error is active or not yet acknowledged. \rightarrow Error - contact opens (ready - contact closes)	Opens
	Warning: general warning, a limit value was reached that could lead to a later shutdown of the FI.	Opens
	Overcurrent warning: At least 130% of the nominal FI current was supplied for 30 seconds.	Opens
$10=$	Overtemperature motor (warning): The motor temperature is evaluated via a digital input. \rightarrow Motor is too hot. Warning occurs after 2 seconds, overheating switch-off after seconds.	Opens
$11=$	Torque current limit/Current limit active (warning): The limiting value in P112 or P536 has been reached. A negative value in P435 inverts the reaction. Hysteresis $=10 \%$.	Opens
$12=$	Relay via P541 - external control, the relay can be controlled with parameter P541 (Bit 0) independently of the actual operating status of the FI.	Closes
$13=$	Torque limit gen. active Limit value in P 112 has been reached in the generator range. Hysteresis $=10 \%$.	Closes
$18=$	FI ready: The FI is in operative condition. Following successful enabling, it will deliver an output signal.	Closes

Parameter	Set value / Description / Note	Device	Supervisor	$\begin{aligned} & \text { Parameter } \\ & \text { set } \end{aligned}$
P452	Hysteresis output 3	SK 520E and above	S	P
$\begin{aligned} & 1 \ldots 100 \% \\ & {[10]} \end{aligned}$	Functions are identical to P436!			
P455	Function output 4 (DOUT2)	SK 520E and above		P
$\begin{aligned} & 0 \ldots 39 \\ & {[0]} \end{aligned}$	Control terminals 7140: Functions are identical to P434! Digital output, 15 V to DGND (for SK 5x5E devices, deviations of the signal level are possible (See section 2.12.3)).			
P456	Standardisation output 4	SK 520E and above		P
$\begin{aligned} & -400 \ldots 400 \% \\ & {[100]} \end{aligned}$	Functions are identical to P435!			
P457	Hysteresis output 4	SK 520E and above	S	P
$\begin{aligned} & 1 \ldots 100 \% \\ & {[10]} \end{aligned}$	Functions are identical to P436!			
P460	Time Watchdog		S	
$\begin{aligned} & 0.0 / 0.1 \ldots 250.0 \mathrm{~s} \\ & {[10.0]} \end{aligned}$	$\mathbf{0 . 1}$... $\mathbf{2 5 0 . 0}$ = The time interval between the expected Watchdog signals (programmable function of the digital inputs P420 - P425). If this time interval elapses without an impulse being registered, a switch-off and error message E012 are actuated. $0.0=$ customer error: As soon as a high-low flank or a low signal is detected at a digital input (function 18) the FI switches off with error message E012.			
P461	Function 2 Encoder			
$\begin{aligned} & 0 \ldots 4 \\ & {[0]} \end{aligned}$ SW 1.7 or higher and hardware status CAA	The actual speed list value supplied by functions in the FI. (Settings are iden $0=$ Rotation speed measurem for the FI servo mode. The ISD and P414 determine the P and $1=$ PID actual frequency value speed control. This function characteristic curve. Here P4 $2=$ Frequency addition: The ro 3 = Frequency subtraction: Th 4 = Maximum frequency: The m speed of the encoder.	ental encoder mode: The act annot be switc of the control rotation spee used for contr 4 determine th deduced is a d speed is sub ssible output	the FI can be motor speed off in this fun a system is g a motor with and I propor d to the curre cted from the uency / speed	d for various value is used n. Here P413 for rotation inear of the control etpoint value. al setpoint. limited by the
P462	Pulse number 2 Encoder			
$\begin{aligned} & 16 \ldots 8192 \\ & {[1024]} \end{aligned}$ SW1.7 and above	Input of the pulse-count per rotation (16-8192) of the connected encoder. If the encoder rotation direction is not the same as the FI , (depending on installation and wiring), can be compensated for by selecting the corresponding negative pulse numbers.			
P463	2. Encoder conversion			
$\begin{aligned} & 0.01 \ldots 100.0 \\ & {[1.00]} \end{aligned}$ SW1.7 and above	If the incremental encoder is not mounted directly onto the motor shaft, then the respectively correct transformation ratio of motor speed to encoder speed must be set.$\text { P463 }=\frac{\text { motor speed }}{\text { encoder speed }}$			

only when P461 = 1, 2, 3 or 4, therefore not in Servo mode (motor speed control)

Parameter	Set value / Description / Note	Device	Supervisor	Parameter set
P464	Fixed frequency modes			
$\begin{aligned} & 0 \text {... } 1 \\ & {[0]} \\ & \text { sW1.7 and above } \end{aligned}$	This parameter determines the form in which fixed frequencies are to be processed. $\mathbf{0}=$ Addition to main setpoint: Fixed frequencies and the fixed frequency array are added to each other. I.e. they are added together, or added to an analog setpoint to which limits are assigned according to P104 and P105. $1=$ Main setpoint: Fixed frequencies are not added - neither together, nor to analog setpoints. If for example, a fixed frequency is switched to an existing analog setpoint, the analog setpoint will no longer be considered. A programmed frequency addition or subtraction to one of the analog inputs or bus setpoints is still possible and valid. If several fixed frequencies are selected simultaneously, the frequency with the highest value has priority (E.g.: $\underline{20}>10$ or $\underline{20}>-30$)			
$\begin{array}{r} \text { P465 } \quad \ldots-01 \\ \\ \\ \ldots \end{array}$	Fixed frequency, field			
$\begin{aligned} & -400.0 \ldots 400.0 \mathrm{~Hz} \\ & \text { [} 0 \text {] } \end{aligned}$	In the array levels, up to 31 different fixed frequencies can be set, which in turn can be encoded for the functions 50... 54 in binary code for the digital inputs.			

Parameter	Set value / Description / Note	Device	Supervisor	$\begin{aligned} & \text { Parameter } \\ & \text { set } \end{aligned}$
$\begin{array}{rr} \text { P481 } & \ldots-01 \\ & \ldots \\ & \ldots-10 \end{array}$	Function Bus I/O Out Bits		S	
$\begin{aligned} & 0 \ldots 38 \\ & {[0]} \end{aligned}$	The Bus I/O Out Bits are perceived as multi-f functions (P434; P441; P450; P455). [01] = Bus I/O Out Bit 0 [02] = Bus I/O Out Bit 1 [03] = Bus I/O Out Bit 2 [04] = Bus I/O Out Bit 3 [05] = Bus I/O Out Bit 4 [06] = Bus I/O Out Bit 5 The possible functions for the Bus Out Bits can the relay P434. For further details, please refer to the manual	relay ou $\begin{aligned} & {[07]=} \\ & {[08]=} \\ & {[09]=} \\ & {[10]=} \end{aligned}$ ound in th AS inter	They can be 1 2 BUS status BUS status le of functions BU 0090.	to the same
$\begin{array}{rr} \text { P482 } & \ldots-01 \\ & \ldots \\ & \ldots-10 \end{array}$	Standardisation Bus I/O Out Bits		S	
$\begin{aligned} & -400 \ldots 400 \% \\ & {[100 \text {] }} \end{aligned}$	Adjustment of the limit values of the relay functions/Bus Out Bits. For a negative value, the output function will be output negative. When the limit value is reached and the setting values are positive, the relay contact closes, with negative setting values the relay contact opens.			
$\begin{array}{r} \text { P483 } \quad \ldots-01 \\ \\ \\ \ldots \end{array}$	Hysteresis Bus I/O Out Bits		S	
1... 100%				
[10]	Difference between switch-on and switch-off point to prevent oscillation of the output signal.			

5.6 Additional parameters

Parameter		Set value I Description / Note		Device	Supervisor	$\begin{aligned} & \text { Parameter } \\ & \text { set } \end{aligned}$
P502	$\begin{array}{r} \ldots-01 \\ \ldots \\ \ldots-03 \end{array}$	Leading function value			S	P
$\begin{aligned} & 0 \ldots 21 \\ & {[0]} \end{aligned}$		Selection of up to 3 master values:				

Selection of possible setting values for master values:

	$\begin{aligned} & \mathbf{0}=\text { Off } \\ & \mathbf{1}=\text { Actual frequency } \\ & \mathbf{2}=\text { Actual speed } \\ & \mathbf{3}=\text { Current } \\ & \mathbf{4}=\text { Torque current } \\ & \mathbf{5}=\text { State of digital inputs } \\ & \quad \text { and outputs } \\ & \mathbf{6}= \\ & \text { reserved } \\ & \mathbf{7}= \\ & \text { reserved } \end{aligned}$	$8=$ Setpoint frequency $9=$ Error message $10=$ reserved $11=$ reserved $12=$ Digital Out Bit $0 \ldots 7$ $13=$ reserved $14=$ reserved $15=$ reserved $16=$ reserved		Value analog input 1 Value analog input 2 Desired frequency master value Desired frequency after master value ramp Actual frequency without master value slip
P503	Leading function output		S	
$0 \ldots 3$ [0]	To use the Leading function output, the inverter controller source must be selected in P509. The master value to be transmitted is determined via the BUS interface in parameter P502.			
P504	Pulse frequency		S	
$\begin{aligned} & 3.0 \ldots 16.0 \mathrm{kHz} \\ & {[6.0]} \end{aligned}$	The internal pulse frequency for actuatin parameter. A higher setting reduces mo reduction of the possible motor nominal NOTE: The radio interference sup complied with at a setting complied with. For further NOTE: Raising the pulse frequenc depending on the time $\left(I^{2} t\right.$ rating.	ting the power component motor noise, but leads to inc al torque. ppression limiting curve A of 6.0 kHz on condition tha r details, see Section 8.4. ncy leads to a reduction of $1^{2} t$ curve). For further detail	cha d EM rding	ged with this emissions and o EN55011 is guidelines are ue classes. output current, 8.5. Power de-
P505	Absolute minimum frequency		S	P
$\begin{aligned} & 0.0 \ldots 10.0 \mathrm{~Hz} \\ & \text { [} 2.0 \text {] } \end{aligned}$	Gives the frequency value that cannot b than the absolute minimum frequency, the At the absolute minimum frequency, bra are actuated. If a setting value of "Zero" reversing. When controlling lift equipment, this value current control of the FI operates and a NOTE: \quad Output frequencies $<2 \mathrm{~Hz}$ For further details, see Se	be undershot by the FI. If the FI switches off or chan raking control (P434 or P441) " is selected, the brake rel lue should be set at a mini a connected motor can sup z lead to current limitation. ection 8.5. Power de-rating	tpoin 0.0 d the es no of 2 H fficie	becomes smaller z. setpoint delay (P107) switch during From 2 Hz , the torque.

Parameter	Set value / Description / Note	Device	Supervisor	Parameter set
P506	Automatic error acknowledgement		S	
$\begin{aligned} & 0 \ldots 7 \\ & {[0]} \end{aligned}$	In addition to the manual error acknowledgement, an automatic one can also be selected. $0=$ No automatic error acknowledgement $1 \ldots 5=$ Number of permissible automatic malfunction acknowledgments within one mainson cycle. After mains off and switch on again, the full amount is again available. $6=\quad$ Always, an error message will always be acknowledged automatically if the cause of the error is no longer present. $7=\quad$ ENTER key, acknowledgement is only possible using the ENTER key or by mains switch-off. No acknowledgement is implemented by removing the enable!			
P507	PPO Type			
$\begin{gathered} 1 \ldots 4 \\ {[1]} \end{gathered}$	This parameter can only be used with the technology unit Profibus, DeviceNet or InterBus See also additional descriptions BU 0020, BU 0080, BU 0070			
P508	Profibus address			
$\begin{aligned} & 1 \ldots 126 \\ & \text { [1] } \\ & \hline \end{aligned}$	Profibus address, only with the technology unit Profibus See also the additional description for the Profibus control BU 0020			
P509	Control word source			
$0 . . .10$ [0]	Selection of the interface via which the FI is controlled. $0=$ Control terminals or keyboard control ** with the Control Box (when P510=0), the Parameter Box (not ext. p-box) or via Bus I/O Bits. $1=$ Only control terminals *, the FI can only be controlled via the digital and analog input signals or via the Bus I/O Bits. 2 = USS control word *, the control signals (enable, rotation direction, etc.) are transferred via the RS485 interface, the setpoint via the analog input or the fixed frequencies. 3 = CAN control word * $4=$ Profibus control word * 5 = InterBus control word * $6=$ CANopen control word * 7 = DeviceNet control word * 8 = reserved $9=$ CAN Broadcast * NOTE: For details about the respective Bus systems please refer to the respective Options descriptions: BU 0020 = Profibus BU 0050 = USS BU 0060 = CAN/CANopen BU 0070 = InterBus BU 0080 = DeviceNet BU $0090=$ AS Interface $10=$ CANopen Broadcast *			

${ }^{*}$) Keyboard control (ControlBox, ParameterBox) is blocked, parameterisation is still possible.
${ }^{* *}$) If the communication during keyboard control is interrupted (time out 0.5 sec),
the FI will block without an error message.

Selection of the interface via which the FI receives the setpoint.

$\mathbf{0}=$	Auto: The source of the auxiliary setpoint is automatically derived from the setting in the parameter
$\mathbf{1}=$	Control terminale
frequency, including fixed frequencies	

$4=$ Profibus
5 = InterBus
$6=$ CANopen
7 = DeviceNet
8 = reserved
$9=$ CAN Broadcast
$10=$ CANopen Broadcast

P513	Telegram down time	S	
$\begin{aligned} & -0.1 / 0.0 / \\ & 0.1 \ldots 100.0 \mathrm{~s} \\ & {[0.0]} \end{aligned}$	Monitoring function of the active bus interface. Following receipt of a valid telegram, the next one must arrive within the set period. Otherwise the FI reports an error and switches off with the error message E010 >Bus Time Out<. $0.0=$ Off: Monitoring is switched off. -0.1 = no error: Even if communication between BusBox and FI is interrupted (e.g. 24V error, Box removed, etc.), the FI will continue to operate unchanged.		
P514	CAN Baud rate		
$0 \ldots 7$ $[4]$	Used to set the transfer rate (transfer speed) via the CANbus interface. All bus participants must have the same baud rate setting.		

$\mathbf{0}=10 \mathrm{kBaud}$	$\mathbf{3}=100 \mathrm{kBaud}$	$\mathbf{6}=500 \mathrm{kBaud}$
$\mathbf{1}=20 \mathrm{kBaud}$	$\mathbf{4}=125 \mathrm{kBaud}$	$\mathbf{7}=1 \mathrm{Mbaud}^{*}$ (test
$\mathbf{2}=50 \mathrm{kBaud}$	$\mathbf{5}=250 \mathrm{kBaud}$	purposes only)

*) Safe operation cannot be guaranteed

Parameter	Set value / Description / Note	Device	Supervisor	Parameter set
P516	Masking frequency 1		S	P
$\begin{aligned} & 0.0 \ldots 400.0 \mathrm{~Hz} \\ & \text { [} 0.0 \text {] } \end{aligned}$	The output frequency around the frequency value (P517) set here is masked. This range is transmitted with the set brake and acceleration ramp; it cannot be continuously supplied to the output. Frequencies below the absolute minimum frequency should not be set. $0=$ Masking frequency inactive			
P517	Masking frequency range 1		S	P
$\begin{aligned} & 0.0 \ldots 50.0 \mathrm{~Hz} \\ & {[2.0 \text {] }} \end{aligned}$	Masking range for the >Masking frequency $1<$ P516. This frequency value is added and subtracted from the masking frequency. Masking frequency range 1: P516-P517 ... P516 + P517			
P518	Masking frequency 2		S	P
$\begin{aligned} & 0.0 \ldots 400.0 \mathrm{~Hz} \\ & {[0.0 \text {] }} \end{aligned}$	The output frequency around the frequency value (P519) set here is masked. This range is transmitted with the set brake and acceleration ramp; it cannot be continuously supplied to the output. Frequencies below the absolute minimum frequency should not be set. $0=$ Masking frequency inactive			
P519	Masking frequency range 2		S	P
$\begin{aligned} & 0.0 \ldots 50.0 \mathrm{~Hz} \\ & \text { [} 2.0 \text {] } \end{aligned}$	Masking range for the >Masking frequency $2<$ P518. This frequency value is added and subtracted from the masking frequency. Masking frequency range 2: P518-P519 ... P518 + P519			
P520	Flying start		S	P
$0 \ldots 4$ [0]	This function is required to connect the FI to already rotating motors, e.g. in fan drives. Motor frequencies $>100 \mathrm{~Hz}$ are only picked up in speed controlled mode (Servo mode P300 $=0 N$). $0=$ Switched off, no flying start circuit. $1=$ Both directions, the Fl looks for a speed in both directions. $2=$ Setpoint value direction, searches only in the direction of the setpoint value present. 3 = Both directions, only following mains supply failure and error 4 = In setpoint direction, only following mains supply failure and error			

NOTE: For physical reasons, the flying start circuit only operates above $1 / 10$ of the nominal motor frequency (P201), however not below 10 Hz .

		Example 1	Example 2	
	(P201)	50Hz	200Hz	
	$\mathrm{f}=1 / 10^{*}$ (P201)	$\mathrm{f}=5 \mathrm{~Hz}$	$\mathrm{f}=20 \mathrm{~Hz}$	
	Comparison of f vs. $f_{\text {min }}$ with: $f_{\text {min }}=10 \mathrm{~Hz}$ Result frang=	$5 \mathrm{~Hz}<10 \mathrm{~Hz}$ The flying start circuit functions above $\mathrm{f}_{\text {Fang }}=\mathbf{1 0 \mathrm { Hz }}$	$20 \mathrm{~Hz}<10 \mathrm{~Hz}$ The flying start circuit functions above $\mathrm{f}_{\text {Fang }}=20 \mathrm{~Hz}$	
P521	Flying start resolution		S	P
$\begin{aligned} & 0.02 \ldots 2.50 \mathrm{~Hz} \\ & {[0.05]} \end{aligned}$	Using this parameter, the flying start circuit search increment size can be adjusted. Values that are too large affect accuracy and causes the FI to cut out with an overcurrent report. If the values are too small, the search time is greatly extended.			

P522	Flying start offset		S

Parameter	Set value / Description / Note	Device	Supervisor
Parameter set			
P523	Factory setting		
$0 \ldots 2$	By selecting the appropriate value and confirming it with the ENTER key, the selected parameter range is entered in the factory setting. Once the setting has been made, the value of the parameter returns automatically to 0.		

$0=$ No change: Does not change the parameterisation.
$1=$ Load factory settings: The complete parameterisation of the FI reverts to the factory setting. All originally parameterised data are lost.
$2=$ Factory settings without bus: All parameters of the frequency inverter, with the exception of the bus parameter, are reset to the factory setting.

P533	Factor I't-Motor		S	

50 ... 150 \%
The motor current for the I^{2} t motor monitoring P535 can be weighted with the parameter P533. Larger factors permit larger currents.
SW1.6 and above

P534	..-01 $\ldots-02$	Torque-based disconnection limit		S
$0 \ldots 400 \% / 401$	Via this parameter both the drive [-01] and the generator [-02] switch-off value can be adjusted. $[401]$	If 80% of the set value is reached, a warning status is set. At 100% switch-off is performed with an error message.		

Error 12.1 is given on exceeding the drive switch-off limit and 12.2 on exceeding the generator switch-off limit.

> [01] = drive switch-off limit [02] = generator switch-off limit
$401=$ OFF, means that this function has been disabled.

Switch-off class 5, 60 s at $1.5 \times \mathrm{I}_{\mathrm{N}}$		Switch-off class 10, 120 s at $1.5 \mathrm{x}_{\mathrm{N}}$		Switch-off class 20, 240 s at $1.5 \mathrm{x}_{\mathrm{N}}$	
I_{N} at 0Hz	P535	I_{N} at 0 Hz	P535	I_{N} at 0 Hz	P535
100\%	1	100\%	9	100\%	17
90\%	2	90\%	10	90\%	18
80\%	3	80\%	11	80\%	19
70\%	4	70\%	12	70\%	20
60\%	5	60\%	13	60\%	21
50\%	6	50\%	14	50\%	22
40\%	7	40\%	15	40\%	23
30\%	8	30\%	16	30\%	24

Parameter	Set value / Description / Note	Device	Supervisor
P536	Current limit		S
$0.1 \ldots 2.0 / 2.1$	The inverter output current is limited to the set value. If this limit value is reached, the inverter		
set			
(xominal FI current)	reduces the actual output frequency.		
$[1.5]$	Multiplier with the inverter nominal current, gives the limit value		

P537	Pulse switch-off		S
$10 \ldots 200 \% / 201$	This function prevents rapid shutdown of the Fl according to the load. With the pulse switch-off enabled, the output current is limited to the set value. This limitation is implemented by brief switching off of individual output stage transistors, the actual output frequency remains unchanged.		

10...200\% = Limit value related to the nominal FI current

201 = Function is disabled
NOTE: The value set here can be undershot by a smaller value in P536.
For smaller output frequencies ($<4.5 \mathrm{~Hz}$) or higher pulse frequencies ($>6 \mathrm{kHz}$ or $8 \mathrm{kHz}, \mathrm{P} 504$) the pulse switch-off by the power reduction (see Section 8.5) can be undershot.

NOTE: If the pulse switch-off is disabled (P537=201) and a high pulse frequency is selected in parameter P504, the FI automatically reduces the pulse frequency when the power limit is reached. If the load on the FI is again reduced, the pulse frequency increases to the original value again.

| P538 Mains voltage monitoring | | s | |
| :--- | :--- | :--- | :--- | :--- |

$0 \ldots 4 \quad$ For safe operation of the inverter the power supply must meet a certain quality. If there is a brief interruption of a phase or the voltage supply sinks below a particular limit value, the inverter will output an error.

Under certain operating conditions, it may be necessary to suppress this error message. In this case, the input monitoring can be adjusted.
$0=$ Disabled: No monitoring of the supply voltage.
$1=$ Only phase errors: only phase errors will produce an error message.
2 = Only low voltage: only low voltage will produce an error message.
3 = Phase error and low voltage: Phase errors and low voltage generate error messages.
$4=$ DC supply: The input voltage is fixed at 480 V for the direct supply of direct current. Phase error and low mains voltage monitoring are deactivated.
NOTE: Operation with an impermissible mains voltage can destroy the frequency inverter! With 1/3~230V or 1~115V devices, the phase error monitoring does not function!

| P539 Output monitoring | | \mathbf{S} | \mathbf{P} |
| :--- | :--- | :--- | :--- | :---: |

$0 \ldots 3$ This protective function monitors the output current at the U-V-W terminals and checks for [0] plausibility. In cases of error, the error message E016 is output.
$0=$ Disabled: Monitoring is not active.
$1=$ Motor phase error only: The output current is measured and checked for symmetry. If an imbalance is present, the FI switches off and outputs the error message E016.
$2=$ Excitation monitoring only: At the moment the FI is switched on, the level of the excitation current (field current) is checked. If insufficient excitation current is present, the FI switches off with the error message E016. A motor brake is not released in this phase.
$3=$ Motor phase and excitation monitoring: as 1 and 2 combined
NOTE: This function can be used as an additional protective function for lifting applications, but is not permissible on its own as protection for persons.

Parameter	Set value / Description / Note	Device	Supervisor	Parameter set
P540	Rotation direction mode		S	P

$0 \ldots 7 \quad$ For safety reasons this parameter can be used to prevent a rotation direction reversal and
[0] therefore the incorrect rotation direction.
This function does not work with active position control (SK 53xE only, P600 $=0$).

$0=$ No rotation direction limitation

$1=$ Block direction reversal, the direction reverse button of the ControlBox SK TU3-CTR is blocked.
$\mathbf{2}=$ CW only*, only clockwise direction is possible. The selection of the "incorrect" rotation direction leads to the output of the minimum frequency P104 with the field of rotation R.

3 = CCW only*, only counter-clockwise direction is possible. The selection of the "incorrect" rotation direction leads to the output of the minimum frequency P104 with the field of rotation L.

4 = Enable direction only, rotation direction is only possible according to the enable signal, otherwise 0 Hz is output.
$5=$ CW only monitored*, only CW rotation is possible. The selection of the "incorrect" rotation direction leads to the FI switching off (control block). If necessary, an adequately large setpoint value ($>\mathrm{f}_{\text {min }}$) must be observed.
$6=$ CCW only monitored*, only CCW rotation is possible. The selection of the "incorrect" rotation direction leads to the FI switching off (control block). If necessary, an adequately large setpoint value ($>\mathrm{f}_{\text {min }}$) must be observed.
7 = Enable direction only monitored, Rotation direction is only possible according to the enable signal, otherwise the FI is switched off.
*) Applies to keyboard (SK TU3-) and control terminal actuation, in addition, the direction key on the ControlBox is blocked.

P541	Set Outpu				S	
$\begin{aligned} & 0000 \ldots 3 \text {... } 1 \text { (hex) } \\ & \text { [} 0000 \text {] } \end{aligned}$	Bit $0=$ Output 1 (K1) Bit 1 = Output 2 (K2) Bit $2=$ Output 3 (DOUT1) Bit 3 = Output 4 (DOUT2)		Bit $4=$ Dig. AOut 1 (Analog output 1) Bit 5 ... 7 = reserved Bit $8=$ Bus Out Bit 0 Bit $9=$ Bus Out Bit 1		al outpu set to the control. Bit $10=$ Bit $11=$ Bit $12=$ Bit $13=$	dependently of ction "External us Out Bit 2 us Out Bit 3 us Out Bit 4 us Out Bit 5
		Bit 13-12	Bit 11-8	Bit 7-4	Bit 3-0	
	Min. Value	$\begin{gathered} 00 \\ 0 \end{gathered}$	$\begin{gathered} 0000 \\ 0 \end{gathered}$	$\begin{gathered} 0000 \\ 0 \end{gathered}$	$\begin{gathered} 0000 \\ 0 \end{gathered}$	Binary hex
	Max. Value	$\begin{gathered} 11 \\ 3 \end{gathered}$	$\begin{gathered} 1111 \\ F \end{gathered}$	$\begin{gathered} 0001 \\ 1 \end{gathered}$	$\begin{gathered} 1111 \\ F \end{gathered}$	Binary hex

$$
\begin{array}{ll}
\text { BUS: } & \begin{array}{l}
\text { The corresponding hex value is written into the parameter, thereby setting the } \\
\text { relay and digital outputs. }
\end{array} \\
\text { ControlBox: } & \text { The hexadecimal code is entered directly when the ControlBox is used. } \\
\text { ParameterBox: } & \text { Each individual output can be separately called up in plain text and activated. }
\end{array}
$$

Parameter	Set value / Description / Note	Device	Supervisor	$\begin{aligned} & \text { Parameter } \\ & \text { set } \end{aligned}$
P542	Set analog output		S	
$\begin{aligned} & 0.0 \ldots 10.0 \mathrm{~V} \\ & {[0.0]} \end{aligned}$	The analog output of the FI can be set with this function, independently of the actual operating state. To do this, the relevant analog output must be set to the function "External control" (P418 = 7). This function can either be used manually or in combination with a bus control. The value set here will, once confirmed, be produced at the analog output.			
P543	Actual bus value 1		S	P
$\begin{aligned} & 0 \ldots 22 \\ & {[1]} \end{aligned}$	The return value 1 can be selected for bus ac NOTE: Further details can be found in description of P418. $0=$ Off 1 = Actual frequency 2 = Actual speed 3 = Current $4=$ Torque current ($100 \%=$ P112) $5=$ State of digital inputs and outputs ${ }^{1}$ $6=\ldots 7$ reserved 8 = Setpoint frequency 9 = Error number	ation in this p respective B $10=\ldots 11$ $12=$ Bus $13=\ldots 16$ 17 = Value 18 = Value $19=$ Desir $20=$ Desire ramp $21=$ Actual $22=$ Speed SK 52	eter. perating instru ved Bits 0... 7 ved og input 1 (P4 og input 2 (P4 quency maste quency after uency without m encoder (on xE and encod	ns or in the lue (P503) ter value ster value slip possible with eedback)
P544	Actual bus value 2		S	P
$\begin{aligned} & 0 \ldots 22 \\ & {[0]} \end{aligned}$	This parameter is identical to P543. Condition is PPO 2 or PPO 4 type (P507).			
P545	Actual bus value 3		S	P
$\begin{aligned} & 0 \ldots 22 \\ & {[0]} \end{aligned}$	This parameter is identical to P543. Condition is PPO 2 or PPO 4 type (P507).			

[^3]| Parameter | Set value / Description / Note | Device | Supervisor | Parameter set |
| :---: | :---: | :---: | :---: | :---: |
| P546 | Bus setpoint 1 | | S | P |
| | In this parameter, a function is allocated to the output setpoint 1 during bus actuation. | | | |
| [1] | NOTE: Further details can be found description of P400.
 $0=$ Off
 $1=$ Setpoint frequency (16 Bit)
 $2=$ Torque current limit (P112)
 3 = Actual frequency PID
 $4=$ Frequency addition
 $5=$ Frequency subtraction
 $6=$ Current limit (P536)
 $7=$ Maximum frequency (P105)
 8 = Actual PID frequency limited
 $9=$ Actual PID frequency monitored
 $10=$ Torque servo mode (P300)
 $11=$ Torque precontrol (P214) | $\begin{aligned} & \text { spective B } \\ & =\text { reserv } \\ & =\text { Multip } \\ & =\text { PI pro } \\ & =\text { PI pro } \\ & =\text { PI pro } \\ & =\text { Bus Ir } \\ & =\text { reserv } \\ & =\text { Status } \\ & =\text { Value } \\ & =\text {...45 } \\ & =\text { Setpo } \\ & =\text { reserv } \end{aligned}$ | perating instru
 n
 controller actu controller setp controller lead $0 . .7$
 ut (P434/441/4
 g output (P41
 ed for SK 530
 que process | ns or in the
 alue
 (455=38)
 1)
 BU 0510
 roller |
| P547 | Bus setpoint 2 | | S | P |
| $\begin{aligned} & 0 \ldots 47 \\ & {[0]} \\ & \hline \end{aligned}$ | This parameter is identical to P546. | | | |
| P548 | Bus setpoint 3 | | S | P |
| $\begin{aligned} & 0 \ldots 47 \\ & {[0]} \\ & \hline \end{aligned}$ | This parameter is identical to P546. | | | |
| P549 | PotentiometerBox function | | S | |
| $\begin{aligned} & 0 \ldots 16 \\ & {[0]} \end{aligned}$ | In this parameter, the setpoint of the Pote (An explanation can be found in the descrip
 As of software version 1.7 R0, on setting to function as suppliers of auxiliary setpoi
 $0=$ Off
 $1=$ Setpoint frequency
 2 = Torque current limit
 3 = Actual frequency PID
 $4=$ Frequency addition
 $5=$ Frequency subtraction
 $6=$ Current limit
 7 = Maximum frequency | Box (SK 400)
 ControlB Section $\begin{aligned} 8 & =\mathrm{Ac} \\ 9 & =\mathrm{Ac} \\ 10 & =\mathrm{TC} \\ 11 & =\mathrm{TC} \\ 12 & =\mathrm{re} \\ 13 & =\mathrm{Ml} \\ 14 & =\mathrm{PI} \\ 15 & =\mathrm{PI} \\ 16 & =\mathrm{PI} \end{aligned}$ | OT) is assign
 the Paramete
 ID frequency
 ID frequency
 precontrol
 d
 ation
 ss controller
 ss controller
 ss controller | with a function
 x are also se
 ed
 nitored
 al value
 oint |

Controlling the FI with the SK CSX-0: If P549=1 is set and the operating value display P000 is selected, the drive can be controlled with the SimpleBox (see Section 3.2.1) on the FI.
Depressing the button for a long time starts the drive, pressing briefly stops it. The speed of rotation can be controlled in the positive and negative range by means of the rotating knob.
Control of the FI with the SimpleBox is not possible in combination with the ParameterBox SK TU3-PAR.

NOTE: Please note that in this operating mode the drive can only be stopped with the button in the operating value display (brief press) or by switching off the mains supply.

The range of values which can be set is between 0 and 100 ms . With the setting 0 "Auto" the default value (see table) is used. The monitoring function for the CANopen absolute value encoder no longer triggers at 50 ms , but rather at 150 ms .

Parameter	Set value / Description / Note	Device	Supervisor	$\begin{gathered} \text { Parameter } \\ \text { set } \end{gathered}$
P554	Min. chopper trigger point		S	
$65 \ldots 100 \%$ [65]	The switching threshold of the brake chopper can be influenced with this parameter. An optimised value for numerous applications is set in the factory setting. This parameter can be increased for applications where pulsating energy is returned (crank drives) to minimise brake resistance power dissipation. An increase in this setting leads to a faster overvoltage FI switch off.			
P555	Chopper power limit		S	
5 ... 100% [100]	With this parameter it is possible to program a manual (peak) power limit for the brake resistor. The switch-on delay (modulation level) for the chopper can only rise to a certain maximum specified limit. Once this value has been reached, irrespective of the level of the link voltage, the inverter switches off the current to the resistor. The result would be an overvoltage switch-off of the FI.			
P556	Braking resistor		S	
$\begin{aligned} & 20 \ldots 400 \Omega \\ & {[120]} \end{aligned}$	Value of the brake resistance for the calculation of the maximum brake power to protect the resistor. Once the maximum continuous output (P557) including overload (200\% for 60s) is reached, an $\mathrm{I}^{2} \mathrm{t}$ limit error (E003.1) is triggered. Further details in P737.			
P557	Braking resistor power		S	
$0.00 \ldots 20.00 \mathrm{~kW}$ [0.00]	Continuous power (nominal power) of the resistor, to display the actual utilisation in P737. For a correctly calculated value, the correct value must be entered into P556 and P557. $0.00=$ Monitoring disabled			
P558	Magnetizing time		S	P
$0 / 1 / 2 \ldots 500 \mathrm{~ms}$ [1]	For time critical applications, the magnetizing time can be set or deactivated. $0=$ disabled 1 = automatic calculation 2 ... $\mathbf{5 0 0}$ = Time set in [ms] NOTE: Setting values that are too low can reduce the dynamics and starting torque.			
P559	DC run-on time		S	P
$\begin{aligned} & 0.00 \ldots 30.00 \mathrm{~s} \\ & {[0.50]} \end{aligned}$	Following a stop signal and the braking ramp, a direct current is briefly applied to the motor to fully bring the drive to a stop. Depending on the inertia, the time for which the current is applied can be set in this parameter. The current level depends on the previous braking procedure (current vector control) or the static boost (linear characteristic).			
P560	Save on EEPROM		S	
$0 . . .1$ [1]	$\mathbf{0}=$ Changes to the parameter settings are no longer saved on the EEPROM. All previously saved settings are retained, even if the Fl is disconnected from the mains. $1=$ All parameter changes are automatically written to the EEPROM and remain stored there even if the FI is disconnected from the mains supply.			

5.7 Positioning

The parameter group P6xx is only included in SK $53 x E$ frequency inverters. These are used to set the positioning control of the SK $53 x E$

A detailed description of these parameters can be found in manual BU 0510. (www.nord.com)

5.8 Information

Parameter	Set value / Description / Note	Device	Supervisor	Parameter set
P700	Current fault			
0.0 ... 21.4	Current pending fault. Further details in Section 6 Error messages. SimpleBox/ControlBox: Descriptions of the individual error numbers can be found in the point Error messages. ParameterBox: Errors are displayed in plain text, further information can be found in the point Error messages.			
$\begin{array}{r} \text { P701 } \quad \ldots-01 \\ \\ \\ \ldots \end{array}$	Last fault 1... 5			
0.0 ... 21.4	This parameter stores the last 5 faults. Further details in Section 6 Error messages. The ControlBox must be used to select the corresponding memory location 1...5- (Array parameter), and confirmed using the ENTER key to read the stored error code.			
$\begin{array}{rr} \text { P702 } \quad \ldots-01 \\ & \ldots \\ & \ldots-05 \end{array}$	Freq. previous fault 1... 5		S	
-400.0 ... 400.0 Hz	This parameter stores the output frequency that was being delivered at the time the fault occurred. The values of the last 5 faults are stored. The ControlBox must be used to select the corresponding memory location 1...5- (Array parameter), and confirmed using the ENTER key to read the stored error code.			
$\begin{array}{r} \text { P703 } \ldots-01 \\ \\ \\ \ldots \end{array}$	Current previous fault 1... 5		S	
0.0 ... 999.9 A	This parameter stores the output current that was being delivered at the time the fault occurred. The values of the last 5 errors are stored.			It occurred. ray
$\begin{array}{rr} \text { P704 } & \ldots . \\ & \ldots 1 \\ & \ldots . \\ & \ldots \end{array}$	Voltage previous fault 1... 5		S	
$0 \ldots 500 \mathrm{~V}$ AC	This parameter stores the output voltage that was being delivered at the time the fault occurred. The values of the last 5 faults are stored.			The ControlBox must be used to select the corresponding memory location 1...5- (Array parameter), and confirmed using the ENTER key to read the stored error code.

Parameter	Set value / Description / Note	Device	Supervisor	Parameter set
$\begin{array}{r} \text { P705 } \quad \ldots-01 \\ \\ \\ \ldots \end{array}$	UZW previous fault 1...5		S	
$0 \ldots 1000$ V DC	This parameter stores the link voltage that was being delivered at the time the error occurred. The values of the last 5 errors are stored.			
$\begin{array}{r} \text { P706 } \quad \ldots-01 \\ \\ \\ \ldots \end{array}$	Parameter set previous fault 1... 5		S	
$0 \ldots 3$	This parameter stores the parameter set code that was active when the error occurred. Data for the previous 5 faults are stored.			d. Data for ray
$\begin{array}{r} \text { P707 } \quad \ldots-01 \\ \\ \\ \ldots \end{array}$	Software version/ revision			
0.0 ... 9999.9	This parameter shows the software and revision numbers in the FI. This can be significant when different Fls are assigned the same settings. Array 03 provides information about any special versions of the hardware or software A zero stands for the standard version.	$\begin{aligned} \ldots-01 & =\text { Ver } \\ \ldots-02= & \operatorname{Re} \\ \ldots-03 & =\mathrm{Sp} \\ & \text { ha } \end{aligned}$	number (1.7) n number (R0) version of re/software (0.0)	
P708	Status of digital inputs	(SK 520E)		
$\begin{aligned} & 000000000 \text {... } \\ & 111111111 \text { (binary) } \\ & \text { (Display with } \\ & \text { *SK-TU3-PAR) } \end{aligned}$	Displays the status of the digital inputs in binary/hexadecimal code. This display can be used to check the input signals.			
or	Bit $0=$ Digital input 1	Bit 5 = Digital input 6 (SK 520/53xE)		
0000 ... 01FF (hex) (Display with	Bit 1 = Digital input 2	Bit $6=$ Digital input 7 (SK 520/53xE)		
*SK-TU3-CTR *SK-CSX-0)	Bit 2 = Digital input 3	Bit $7=$ Digital function analog input 1		
	Bit 3 = Digital input 4 Bit $4=$ Digital input 5	Bit 8 = Digital function analog input 2		

	Bit 11-8	Bit 7-4	Bit 3-0	
Minimum value	0000	0000	0000	binary
	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	hex
Maximum value	0001	1111	1111	binary
	$\mathbf{1}$	F	F	hex

ControlBox: the binary Bits are converted into a hexadecimal value and displayed.
ParameterBox: the Bits are displayed increasing from right to left (binary).

P709	Voltage analog input 1			
$0.00 \ldots 10.00 \mathrm{~V}$	Displays the measured analog input value 1.			
$\mathbf{P 7 1 0}$	Voltage analog output			
$0.0 \ldots 10.0 \mathrm{~V}$				
Displays the delivered value of analog output $1 .(0.0 \ldots 10.0 \mathrm{~V})$				

Parameter	Set value / Description / Note	Device	Supervisor	Parameter set
P723	Actual voltage components Ud			
0 ... 500 V	Displays the actual field voltage component.			
P724	Actual voltage components Uq			
$0 \ldots 500 \mathrm{~V}$	Displays the actual torque voltage component.			
P725	Actual $\cos \varphi$?			
0.00 ... 1.00	Displays the actual calculated $\cos \varphi$ of the drive.			
P726	Apparent power			
0.00 ... 99.99 kVA	Displays the actual calculated apparent power. Basis for calculation are the motor data P201...P209			
P727	Mechanic power			
-99.99 ... 99.99 kW	Displays the actual calculated effective power of the motor. Basis for calculation are the motor data P201...P209			

P728	Mains voltage		
$0 \ldots 1,000 \mathrm{~V} \quad$ Displays the actual mains voltage at the FI input.			

| P729 | Torque | | |
| :--- | :--- | :--- | :--- | :--- |
| $0 \ldots 400 \%$ | Displays the actual calculated torque. Basis for calculation are the motor data P201...P209 | | |

P730	Field		
$0 \ldots 400 \%$	Displays the actual field in the motor as calculated by the inverter. Basis for calculation are the motor data P201...P209 ...		

P731	Current parameter set			
$0 \ldots 3$				

$\mathbf{0}=$ Parameter set 1
2 = Parameter set 3
$1=$ Parameter set 2
3 = Parameter set 4

P732	U phase current		S	
$0.0 \ldots 999.9 \mathrm{~A}$	Displays the actual U phase current.			
	NOTE: \quadThis value can deviate somewhat from the value in P719, due to the measurement procedure used, even with symmetrical output currents.			

P733	V phase current		S	
$0.0 \ldots 999.9 \mathrm{~A}$	Displays the actual V phase current.			
	NOTE: \quadThis value can deviate somewhat from the value in P719, due to the measurement procedure used, even with symmetrical output currents.			

Parameter	Set value / Description / Note	Device	Supervisor	$\begin{gathered} \text { Parameter } \\ \text { set } \end{gathered}$
P734	W phase current		S	
0.0 ... 999.9 A	Displays the actual W phase current.			
	This value can deviate somewhat from the value in P719, due to the measurement procedure used, even with symmetrical output currents.			

P735	Rotation speed encoder	SK 520E	S	
$-999 \ldots 9999 \mathrm{rpm}$	Displays the actual rotation speed supplied by the incremental encoder. For this, P301 must be correctly set.			

P736	DC link current		
$0 \ldots 1000$ V DC \quad Displays the actual link voltage.			

| P737 | Current braking resistor load | |
| :--- | :--- | :--- | :--- |
| $0 \ldots 1000 \%$ | This parameter provides information about the actual degree of modulation of the brake chopper
 or the current utilisation of the braking resistor in generator mode.
 If parameters P556 and P557 are correctly set, the utilisation related to P5567, the resistor power,
 is displayed.
 If only P556 is correctly set (P557=0), the degree of modulation of the brake chopper is displayed.
 Here, 100 means that the brake resistor is fully switched. On the other hand, 0 means that the
 brake chopper is not active at present.
 If P556 $=0$ and P557 $=0$, this parameter also provides information about the degree of
 modulation of the brake chopper in the FI. | |

P738	Current motor load		
$0 \ldots 1000 \%$	Shows the actual motor load. Basis for calculation is the motor data P203. The actually recorded current is related to the nominal motor current.		

P739	Current heat sink temperature			
0 ... 100	Displays the actual FI heat sink temperature.			
$\begin{array}{rr} \hline \text { P740 } & \ldots-01 \\ & \ldots \\ & \ldots-13 \end{array}$	Bus In process data		S	
0000 ... FFFF (hex)	This parameter informs about the actual control word and the setpoints that are transferred via the bus systems. For display, a BUS system must be selected in P509	...-01 = Control Word	Control word, source from P509.	
		... - 02 = setpoint value 1 ... - $03=$ setpoint value 2 ... - 04 = setpoint value 3	Setpoint data from master setpoint P510-01.	
		... - $05=$ Bus I/O In Bits (P480)	The displayed value depicts all Bus In Bit sources linked with OR.	
		... - $\mathbf{0 6}=$ Parameter data $\ln 1$... - $07=$ Parameter data $\ln 2$... -08=Parameter data In 3 ... - $09=$ Parameter data $\ln 4$... - $\mathbf{1 0}=$ Parameter data $\ln 5$	Data during parameter transfer: Order label (AK), Parameter number (PNU), Index (IND), Parameter value (PWE 1/2)	
		... - $\mathbf{1 1}$ = setpoint value 1 ... - 12 = setpoint value 2 ... - 13 = setpoint value 3	Setpoint data from the leading function value (Broadcast), if P509 $=9 / 10$	

Parameter	Set value / Description / Note			Device	Supervisor	$\begin{gathered} \text { Parameter } \\ \text { set } \end{gathered}$
$\begin{array}{r} \text { P748 } \quad \ldots-01 \\ \\ \\ \ldots \\ \ldots \end{array}$	Status CANopen			SK 520E and above	S	
0000 ... FFFF (hex) [01] = CANbus/CANopen Status Bit $0=24 \mathrm{~V}$ Bus supply voltage Bit $1=$ CANbus in status "Bus Warning" Bit $2=$ CANbus in status "Bus Off" Bit $3 \ldots 5=$ free Bit $6=$ Protocol of the CAN module is $0=$ CAN or $1=$ CANopen Bit $7=$ free Bit $8=$ „Bootsup Message" sent Bit $9=$ CANopen NMT State Bit $10=$ CANopen NMT State Bit $11=$ free Bit $12 \ldots 14=$ reserved Bit $15=$ free				[02] = reserved	[03] = reserved	
	CANopen NMT State Stopped $=$ Pre-Operational $=$ Operational $=$	Bit 10 0 0 1	Bit 9 0 1 0			

P750	Overcurrent statistic		S	
0... 9999	Number of overcurrent messages during the operating period P714.			
P751	Over voltage statistic		S	
0... 9999	Number of overvoltage messages during the operating period P714.			
P752	Mains supply faults		S	
0... 9999	Number of mains faults during the operating period P714.			
P753	Overheating statistics		S	
0... 9999	Number of overtemperature faults during the operating period P714.			
P754	Parameter loss statistic		S	
0... 9999	Number of parameters lost during the operating period P714.			
P755	System faults statistic		S	
0... 9999	Number of system faults during the operating period P714.			
P756	Time out statistics		S	
0 ... 9999	Number of Time out errors during the operating period P714.			
P757	Customer faults statistic		S	
0... 9999	Number of Customer Watchdog faults during the operating period P714.			
$\begin{array}{rr} \text { P799 } & \ldots-01 \\ & \ldots \\ & \ldots-05 \end{array}$	Operating hours, latest fault 1... 5			
$0.1 \ldots \ldots$ h	This parameter shows the operating hours counter status (P714) at the moment of the previous fault. Array $01 . . .05$ corresponds to the lastest fault $1 . . .5$.			

5.9 Parameter monitoring, User settings

$(P) \Rightarrow$ Parameter set dependent, these parameters can be differently adjusted in 4 parameter sets.
$S \Rightarrow$ Supervisor parameter, visibility depends on P003.

Parameter No.	Name	Factory setting	Supervisor	Setting after commissioning			
				P 1	P 2	P 3	P 4
OPERATING DISPLAYS (5.1)							
P000	Operating display						
P001	Selection display	0					
P002	Factor display	1.00	S				
P003	Supervisor code	1		$0=S$ parameters are hidden 1= all parameters are visible			

BASIC PARAMETERS (5.2)

P100	Parameter set	0	S					
P101		Copy parameter set	0	S				
P102	(P)	Acceleration time [s]	2.0					
P103	(P)	Deceleration time [s]	2.0					
P104	(P)	Minimum frequency [Hz]	0.0					
P105	(P)	Maximum frequency [Hz]	50.0					
P106	(P)	Ramp smoothing [\%]	0	S				
P107	(P)	Brake reaction time [s]	0.00					
P108	(P)	Disconnection mode	1	S				
P109	(P)	DC brake current [\%]	100	S				
P110	(P)	DC braking time on [s]	2.0	S				
P111	(P)	P factor torque limit [\%]	100	S				
P112	(P)	Torque current limit [\%]	401 (off)	S				
P113	(P)	Jog frequency [Hz]	0.0	S				
P114	(P)	Brake ventiation time [s]	0.00	S				

MOTOR DATA I CHARACTERISTIC CURVE PARAMETERS (5.3)

P200	(P)	Motor list	0				
P201	(P)	Nominal motor frequency [Hz]	$50.0 *$	S			
P202	(P)	Nominal motor speed [rpm]	$1385 *$	S			
P203	(P)	Nominal motor current [A]	4.8^{*}	S			
P204	(P)	Nominal motor voltage [V]	$230 *$	S			
P205	(P)	Nominal motor power [kW]	$1.10 *$				
P206	(P)	Motor cos phi	$0.78 *$	S			
P207	(P)	Motor circuit [star=0/delta=1]	1 *	S			
P208	(P) Stator resistance [?]	6.28^{*}	S				
P209	(P)	No load current [A]	$3.0 *$	S			
P210	(P)	Static boost [\%]	100	S			
P211	(P)	Dynamic boost [\%]	100	S			
P212	(P) Slip compensation [\%]	100	S				

5.9 Parameter monitoring, User settings

Parameter No.	Name	Factory setting	Supervisor	Setting after commissioning			
				P 1	P 2	P 3	P 4
P213 (P)	ISD ctrl loop gain [\%]	100	S				
P214 (P)	Torque precontrol [\%]	0	S				
P215 (P)	Boost precontrol [\%]	0	S				
P216 (P)	Time boost precontrol [s]	0.0	S				
P217 (P)	Oscillation damping [\%]	10	S				
P218 (P)	Modulation depth [\%]	100	S				
P219	Auto. excitation [\%]	100	S				
P220 (P)	Parameter identification	0					
*) dependent on Fl power or P200/P220							

CONTROL PARAMETERS (5.4) Encoder input, only SK 520E/530E

CONTROL TERMINALS (5.5)

P400	Analog input function 1	1					
P401	Analog on mode. 1	0	S				
P402	Adjustment 1: 0\% [V]	0.0	S				
P403	Adjustment 1: 100% [V]	10.0	S				
P404	Filter analogue input 1 [ms]	100	S				
P405	Analog input function 2	0					
P406	Mode analog input 2	0	S				
P407	Adjustment 2: 0\% [V]	0.0	S				
P408	Adjustment 2: 100\% [V]	10.0	S				
P409	Filter analogue input 2 [ms]	100	S				
P410	(P)	Min. freq. aux. setpoint [Hz]	0.0				
P411	(P)	Max. freq. aux. setpoint [Hz]	50.0				
P412	(P)	Nom.val process ctrl [V]	5.0	S			

Parameter No.	Name	Factory setting	Supervisor	Setting after commissioning			
				P 1	P 2	P 3	P 4
P413 (P)	P-component PID control [\%]	10.0	S				
P414 (P)	I-component PID control [\%/ms]	10.0	S				
P415 (P)	D-component PID control [\%ms]	1.0	S				
P416 (P)	Ramp time PI setpoint. [s.]	2.0	S				
P417 (P)	Offset analog output [V]	0.0	S				
P418 (P)	Functions: analog output	0					
P419 (P)	Norm. analogue output [\%]	100					
P420	Digital input 1 (DIN1)	1					
P421	Digital input 2 (DIN2)	2					
P422	Digital input 3 (DIN3)	8					
P423	Digital input 4 (DIN4)	4					
P424	Digital input 5 (DIN5)	0					
P425	Digital input 6 (DIN6)	0					
P426 (P)	Quick stop time [s]	0.10					
P427	Emerg. stop error	0	S				
P428 (P)	Automatic starting	0 (off)	S				
P429 (P)	Fixed frequency 1 [Hz]	0.0					
P430 (P)	Fixed frequency 2 [Hz]	0.0					
P431 (P)	Fixed frequency $3[\mathrm{~Hz}]$	0.0					
P432 (P)	Fixed frequency $4[\mathrm{~Hz}]$	0.0					
P433 (P)	Fixed frequency $5[\mathrm{~Hz}]$	0.0					
P434 (P)	Function output 1 (K1)	1					
P435 (P)	Output 1 standardisation [\%]	100					
P436 (P)	Output 1 hysteresis [\%]	10	S				
P441 (P)	Function output 2 (K2)	7					
P442 (P)	Output 2 standardisation [\%]	100					
P443 (P)	Output 2 hysteresis [\%]	10	S				
P450 (P)	Output 3 function (DOUT1)	0					
P451 (P)	Output 3 standardisation [\%]	100					
P452 (P)	Output 3 hysteresis [\%]	10	S				
P455 (P)	Output 4 function (DOUT2)	0					
P456 (P)	Output 4 standardisation [\%]	100					
P457 (P)	Output 4 hysteresis [\%]	10	S				
P460	Watchdog time [s]	10.0	S				
P461	Function 2 Encoder	0					
P462	Pulse number 2 Encoder [Imp.]	1024					
P463	2. Encoder conversion	1.00					
P465	Fixed frequency, field [-01...-31]	0					
P466 (P)	Min. process controller freq.	0.0					
P470	Digital input 7 (DIN7)	0					
P475	Switch-on/off delay [s.]	0.000	S				

Parameter No.	Name	Factory setting	Supervisor	Setting after commissioning			
				P 1	P 2	P 3	P 4
P480	Function Bus I/O In Bits	0	S				
P481	Function Bus I/O Out Bits	0	S				
P482	Norm. Bus I/O Out Bits [\%]	100	S				
P483	Hyst. Bus I/O Out Bits [\%]	10	S				

ADDITIONAL PARAMETERS (5.6)

P502		Leading function value	0	S					
P503		Leading function output	0	S					
P504		Pulse frequency [kHz]	6.0	S					
P505	(P)	Abs. minimum frequency [Hz]	2.0	S					
P506		Auto. fault acknowledgement.	0	S					
P507		PPO Type	1						
P508		Profibus address	1						
P509		Source control word	0						
P510		Setpoint source	0 (auto)	S					
P511		USS baud rate	3	S					
P512		USS address	0						
P513		Telegram time-out [s]	0.0	S					
P514		CAN baud rate	4						
P515		CAN address	50						
P516	(P)	Skip frequency 1 [Hz]	0.0	S					
P517	(P)	Skip frequency area $1[\mathrm{~Hz}]$	2.0	S					
P518	(P)	Skip frequency $2[\mathrm{~Hz}]$	0.0	S					
P519	(P)	Skip frequency area $2[\mathrm{~Hz}]$	2.0	S					
P520	(P)	Flying start	0	S					
P521	(P)	Flying start resolution [Hz]	0.05	S					
P522	(P)	Flying start offset [Hz]	0.0	S					
P523		Factory setting	0						
P533		Factor I^{2} t-Motor [\%]	100	S					
P534		Torque-based disconn. Limit [\%]	401 (off)	S					
P535		1^{2} t motor	0	S					
P536		Current limit	1.5	S					
P537		Pulse switch-off [\%]	150	S					
P538		Mains voltage monitoring	3	S					
P539	(P)	Output monitoring	0	S					
P540		Rotation direction mode	0	S					
P541		Set output [hex]	0000	S					
P542		Set analog output [V]	0.0	S					
P543	(P)	Bus - actual value 1	1	S					
P544	(P)	Bus - actual value 2	0	S					
P545	(P)	Bus - actual value 3	0	S					
P546	(P)	Function Bus - set point 1	1	S					

Parameter No.	Name	Factory setting	Supervisor	Setting after commissioning			
				P 1	P 2	P 3	P 4
P547 (P)	Function Bus - set point 2	0	S				
P548 (P)	Function Bus - set point 3	0	S				
P549	PotentiometerBox function	0	S				
P550	ParameterBox Orders	0					
P551	Drive profile	0	S				
P552	CAN cycle time	0	S				
P554	Min. chopper trigger point [\%]	65	S				
P555	P chopper limit [\%]	100	S				
P556	Braking resistance [Ω]	120	S				
P557	Braking resistance power [kW]	0	S				
P558 (P)	Magnetisation time [ms]	1	S				
P559 (P)	DC lag period [s]	0.50	S				
P560	Storage in EEPROM	1	S				
POSITIONING (5.7)		NOTE:	Further details are listed and described in manual BU 0510. (www.nord.com)				
P600 (P)	Position control	0 (off)	S				
P601	Actual position [rev]	---					
P602	Actual Ref. Pos. [rev]	---					
P603	Curr. position. diff. [rev]	---	S				
P604	Encoder type	0	S				
P605	Absolute encoder	10	S				
P607	Ratio	1	S				
P608	Reduction ratio	1	S				
P609	Offset position [rev]	0	S				
P610	Sollwert-Modus	0	S				
P611	Lageregeler P [\%]	5	S				
P612	Pos. Window [rev]	0	S				
P613	Position [rev]	0	S				
P615	Maximum position [rev]	0	S				
P616	Minimum position [rev]	0	S				
P625	Hysteresis output [rev]	1	S				
P626	Relais position [rev]	0	S				
P630	Position slip error [rev]	0	S				
P631	Abs/Inc slip error [rev]	0	S				
P640	Unit of pos. value	0	S				

6 Error messages

Errors cause the frequency inverters to switch off, in order to prevent a device fault.
The following options are available to reset an error (acknowledge):

1. Switching the mains off and on again,
2. By an appropriately programmed digital input (P420 ... P425 / P470 = Function 12),
3. By switching of the "enable" on the frequency inverter (if no digital input is programmed for acknowledgement),
4. By Bus acknowledgement or
5. by P506, automatic error acknowledgement.

Device LEDs: In the delivery condition (without technology unit) 2 LEDs (green/red) are visible externally. These indicate the current status of the device.
The green LED indicates that the mains voltage is present and operational, while a flashing code that increases in speed shows the degree of overload at the frequency inverter output.

The red LED signals actual error by flashing with a frequency which corresponds to the number code of the error (Section. 6.2).

6.1 SimpleBox / ControlBox display

The SimpleBox or ControlBox display an error with its number and the prefix "E". In addition, the actual error is displayed in parameter P700. The last error messages are stored in parameter P701. Further information on inverter status when errors occur can be found in parameters P702 to P706 / P799.
If the cause of the error is no longer present, the error display in the SimpleBox/ControlBox flashes and the error can be acknowledged with the Enter key.

6.2 Table of possible error messages

Display in the ControlBox		Error text in the Parameter Box	Cause - Remedy
Group	Detail in P700 / P701		
E001	1.0	Inverter overtemperature	Error signal from output stage module (static) - Reduce ambient temperature $<50^{\circ} \mathrm{C}$ (see also Section 7 , technical details). - Check control cabinet ventilation - Increase ambient temperature, $>0^{\circ} \mathrm{C}$
E002	2.0	Motor overtemperature (PTC resistor) Only if a digital input is programmed (Function 13).	Motor temperature sensor has triggered - Reduce motor load - Increase motor speed - Use external motor fan
	2.1	Motor overtemperature $\left(1^{2} t\right)$ Only if $\mathrm{I}^{2} \mathrm{t}$ - Motor (P535) is programmed.	$I^{2} t$ - Motor has triggered - Reduce motor load - Increase motor speed

Display in the ControlBox		Error text in the Parameter Box	Cause - Remedy		
Group	Detail in P700 / P701				
E003	3.0	Inverter overcurrent	$I^{2} t$ limit has triggered, e.g. $>1.5 \times \mathrm{I}_{\mathrm{n}}$ for 60 s (please also note P504) - Continuous overload at inverter output		
	3.1	Chopper overcurrent	$\mathrm{U}^{2} \mathrm{t}$-limit for brake chopper has triggered (please also see P554, P555, P556, P557) - Avoid overcurrent in braking resistance		
	3.2	Overcurrent IGBT monitoring 125\%	De-rating (power reduction) - 125% overcurrent for 50 ms - Brake chopper current too high - for fan drives: enable flying start circuit (P520)	See also Section 8.5	
	3.3	Overcurrent IGBT rapid monitoring 150\%	De-rating (power reduction) - 150% overcurrent - Brake chopper current too high		
E004	4.0	Overcurrent module	Error signal from module (short duration) - Short circuit or earthing at FI output - Use external output choke (motor cable is too long) - Braking resistor defective or too small (See Section 7)		
	4.1	Overcurrent pulse switch-off	P537 (pulse current switch-off) was reached $3 x$ within 50 ms (only possible if P112 and P536 are disabled) - Fi is overloaded - Check motor data (P201 ... P209)		
E005	5.0	Overvoltage link circuit	FI link voltage is too high - Reduce energy return by means of a braking resistance - Extend braking time (P103) - If necessary, set switch-off mode (P108) with delay (not for lifting equipment) - Extend emergency stop time (P426)		
	5.1	Overvoltage mains	Mains voltage is too high - Please check 380V-20\% ... $480 \mathrm{~V}+10 \%$ or 200 ... $240 \mathrm{~V} \pm 10 \%$		
E006	6.0	Link circuit undervoltage (charging error))	Inverter mains/link voltage too low - Check mains voltage 380V-20\% ... $480 \mathrm{~V}+10 \%$ or 200 ... $240 \mathrm{~V} \pm 10 \%$		
	6.1	Mains undervoltage			
E007	7.0	Mains phase failure	One of the three mains input phases was or is interrupted. - Check mains phases $380 \mathrm{~V}-20 \%$... $480 \mathrm{~V}+10 \%$ or $200 \ldots 240 \mathrm{~V} \pm 10 \%$, possibly too low? - All three mains phases must be symmetrical.		
	OFF	NOTE:OFF appears in the display when the three mains phases are uniformly reduced, i.e. when a normal mains switch off occurs during operation.			

Display in the ControlBox		Error text in the Parameter Box	Cause - Remedy
Group	Detail in P700 / P701		
E008	8.0	EEPROM parameter loss (maximum value exceeded))	Error in EEPROM data - Software version of the stored data set not compatible with the software version of the FI. NOTE: \quad Faulty parameters are automatically reloaded (factory setting). - EMC interferences (see also E020)
	8.1	Invalid inverter type	- EEPROM faulty
	8.2	External EEPROM copy error (ControlBox)	- Check ControlBox for correct position. - ControlBox EEPROM faulty (P550 = 1).
	8.3	Customer interface incorrectly identified (customer's interface equipment)	The upgrade level of the frequency inverter was not correctly identified. - Switch mains voltage off and on again.
	8.4	Database version incorrect	
	8.7	Original and mirror not identical	
E009	---	ControlBox errorl SimpleBox error	SPI Bus faulty, no communication with ControlBox / SimpleBox. - Check ControlBox for correct position. - Check correct cabling of SimpleBox. - Switch mains voltage off and on again.
E010	10.0	Telegram downtime	Data transfer is faulty. Check P513 - Check external Bus connection. - Check Bus Protocol program process. - Check Bus master. - Check 24 V supply of internal CAN/CANopen Bus. - Nodeguarding error (internal CANopen) - Bus Off error (internal CAN Bus)
	10.2	External bus module telegram time-out	Telegram transfer is faulty. - Check external connection. - Check Bus Protocol program process. - Check Bus master.
	10.4	External bus module initialisation failure	- Check P746. - Bus module not correctly plugged in. - Check Bus module current supply.
	10.1	External Bus module system failure	Further details can be found in the respective additional BUS operating instructions.
	10.3		
	10.5		
	10.6		
	10.7		
	10.8	External module communication failure	- Connection fault / error in the external component - Brief interruption (<1sec) of the 24 V supply of the internal CAN/CANopen bus

Display in the ControlBox		Error text in the Parameter Box	Cause - Remedy
Group	Detail in P700 / P701		
E011	11.0	Customer unit (AnalogDigital converter error)	Internal customer unit (internal databus) faulty or damaged by radio radiation (EMC) - Check control terminals connection for short-circuit. - Minimize EMC interference by laying control and power cables separately. - Earth the devices and shields well.
E012	12.0	Watchdog customer I customer error	The Watchdog function is selected at a digital input and the impulse at the corresponding digital input is not present for longer than the time set in parameter P460 $>$ Watchdog time $<$.
	12.1	Drive switch-off limit exceeded	The drive switch-off limit P534 [01] has triggered. - Reduce load on motor - Set a higher value in P534 [01].
	12.2	Generator switch-off value exceeded	The generator switch-off limit P534 [02] has triggered. - Reduce load on motor - \quad Set a higher value in P534 [02].
E013	13.0	Encoder error	No signal from encoder - Check 5 V sensor if available. - Check supply voltage of encoder.
	13.1	Speed slip error	The slip speed error limit was reached. - Increase setting in P327.
	13.2	Slip error switch-off monitoring	The slip error monitoring was triggered; the motor could not follow the setpoint. - Check motor data P201-P209! This data is very important for the current control - Check motor circuit. - If necessary, check the encoder setting P3xx in Servo mode. - Increase setting value for torque limit in P112. - Increase setting value for current limit in P536.
E016	16.0	Motor phase error	A motor phase is not connected. - Check P539 - Check motor connections
	16.1	Motor current monitoring for braking mode	Required exciting current not achieved at moment of switchon. - Check P539 - Check motor connections
E018	18.0	Safety circuit	The safe pulse block was triggered while the frequency inverter was being enabled. - Only available in SK $51 \times \mathrm{x}$ and SK 53 xE . Details in manual BU 0530 (www.nord.com).

Display in the ControlBox		Error text in the Parameter Box	Cause - Remedy
Group	Detail in P700 / P701		
E019	19.0	Parameter identification error	Automatic identification of the connected motor was unsuccessful - Check motor connections - Check pre-set motor data (P201 ... P209)
	19.1	Motor star/delta circuit is not correct	
E020	20.0	reserved	System error in program execution, triggered by EMC interference. Please comply with wiring guidelines in Section 2.6. Use additional external mains filter. (Section. 8.3 / 8.4 EMC) FI must be very well "earthed".
E021	20.1	Watchdog	
	20.2	Stack overflow	
	20.3	Stack underflow	
	20.4	Undefined opcode	
	20.5	Protected Instruction	
	20.6	Illegal word access	
	20.7	Illegal instruction access	
	20.8	EPROM error	
	20.9	reserved	
	21.0	NMI error (not used by hardware)	
	21.1	PLL Error	
	21.2	ADU Overrun	
	21.3	PMI Access Error	

7 Technical data

7.1 SK 500E: General Data

Function		Specification	
Output frequency		0.0 ... 400.0 Hz	
Pulse frequency		3.0 ... 16.0 kHz , standard setting $=6 \mathrm{kHz}$ Power reduction $>8 \mathrm{kHz}$ for 230 V device, $>6 \mathrm{kHz}$ for 400 V device.	
Typical overload capacity		150\% for 60s, 200% for 3.5 s	
Protective measures against		Over-heating of the frequency inverter, overvoltage and undervoltage Short-circuit, earthing fault, overload, idling	
Regulation and control		Non-sensor vector current control (ISD), linear V/f characteristic	
Analog setpoint input / PID input		2 x (S5 and 6: -10V...) 0...10V, 0/4...20mA, scalable, digital 7.5...30V	
Analog setpoint resolution		10 bit based on measurement range	
Analog output		0 ... 10V scalable	
Setpoint consistency		Analog < 1\% Digital < 0.02\%	
Motor temperature monitoring:		1^{2} t-Motor (UL approval), PTC / Bi-metal switch (no UL approval)	
Digital input		$5 \mathrm{x}(2.5 \mathrm{~V}) 7.5 \ldots 30 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}=(2.2 \mathrm{k} \Omega) 6.1 \mathrm{k} \Omega$, cycle time $=1 \ldots 2 \mathrm{~ms}$ in addition, with SK $52 \times E / 53 x E: 2 \times 7.5 \ldots 30 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}=6.1 \mathrm{k} \Omega$, cycle time $=1 \ldots 2 \mathrm{~ms}$	
Electrical isolation		Control terminals (digital and analog inputs)	
Control outputs		$2 x$ relay 28 V DC / 230 V AC, 2 A (output $1 / 2-\mathrm{K} 1 / \mathrm{K} 2$) in addition, with SK 520E/530E: $2 x$ digital outputs $15 \mathrm{~V}, 20 \mathrm{~mA}$ or in addition, with SK 535E: $2 x$ digital outputs $18 \ldots 30 \mathrm{~V}$ (according to VI), 20 mA , or $2 x$ digital outputs $30 \mathrm{~V}, 200 \mathrm{~mA}$ from S5 (output 3/4-DOUT1/2)	
Interfaces		Standard: RS 485 (USS) Option: Profibus DP RS 232 (single slave) CANbus (except SK 50xE) InterBus CANopen CANopen (except SK 50xE) DeviceNet AS Interface	
Efficiency of frequency inverter		ca. 95% according to size	
Ambient temperature		$0 \quad \ldots+40^{\circ} \mathrm{C}(\mathrm{S} 1-100 \% \mathrm{ED}), \quad 0^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}(\mathrm{S} 3-70 \% \mathrm{ED} 10 \mathrm{~min})$	
Storage and transport temperature		$-20^{\circ} \mathrm{C} \ldots+60 / 70$	
Long-term storage		Connect the frequency inverter to the mains voltage for 60 minutes at the latest after one year. Maintain this cycle throughout the storage period.	
Protection class		IP20	
Max. mounting altitude above sea level		up to 1000 m : No power reduction 1000... 4000 m : $1 \% / 100 \mathrm{~m}$ power reduction (up to 2000 m overvoltage cat. 3) 2000...4000m: Only overvoltage category 2 is maintained, external overvoltage protection at the mains input is necessary	
Waiting period between two power-up cycles		60 sec for all devices in normal operating cycle	
Connection terminals	Mains/motor/brake resist. Control unit Relay 1 / 2 RS485 / RS232 CANbus / CANopen	According to size Details / $25 \mathrm{~mm}^{2}$ flexible with wiring sleeves, Terminal screw $35 \mathrm{~mm}^{2}$ with rigid cable tightening torque $1.0 \mathrm{~mm}^{2}$ with wiring sleeves $0.5 \ldots 0.6 \mathrm{Nm}:$ $1.5 \mathrm{~mm}^{2}$ with wiring sleeves $(\mathrm{S} 1-4)$ see Section $4.0 \mathrm{~mm}^{2}$ with wiring sleeves $(\mathrm{S} 5-6)$ 2.11 $1 \times \mathrm{RJ12}$ (6-pin) $2 \times$ RJ45 (8-pin) (except SK 50xE and SK510E)	
External supply voltage, control unit SK 5×5 E		S 1-4: 18...30V DC, min. 800 mAS 5-6: $24 \ldots 30 \mathrm{~V}$ DC, min. 1000 mA	

7.2 Electrical data 115V

Size 1					
Device type:	SK 5xxE...	-250-112-0	-370-112-0	-550-112-0	-750-112-0
Nominal motor power	230 V	0.25 kW	0.37 kW	0.55 kW	0.75 kW
(4-pole standard motor)	240 V	${ }^{1} / 3 \mathrm{hp}$	$1 / 2 \mathrm{hp}$	$3 / 4 \mathrm{hp}$	1 hp
Mains phases	Number	1 AC			
Mains voltage	1~115V	$110 \ldots 120 \mathrm{~V}, \pm 10 \%, 47 \ldots 63 \mathrm{~Hz}$			
Output voltage	3~230V	$3 \mathrm{AC} 0-220$... 240 V			
Nominal output current at 230 V	rms [A]	1.7	2.2	3.0	4.0
Min. braking resistor	Accessories	240Ω	190Ω	140Ω	100Ω
Typical current at 230 V	$\begin{array}{ll} 1 \mathrm{AC} \\ & \\ & \mathrm{rms}[\mathrm{~A}] \end{array}$	8 A	10 A	13 A	18 A
Rec. mains fuse	$\begin{aligned} & 1 \text { AC } \\ & \text { slow-blow }[\mathrm{A}] \end{aligned}$	16 A	16 A	16 A	20 A
Type of ventilation		Free convection		Fan cooling (temperature-controlled) Switching thresholds: $\mathrm{ON}=57^{\circ} \mathrm{C} \quad \mathrm{OFF}=47^{\circ} \mathrm{C}$	
Weight	approx. [kg]	1.4			

7.3 Electrical data 230V

Size 1				
Device type: SK 5xxE...	-250-323-A	-370-323-A	-550-323-A	-750-323-A
Nominal motor power 230V	0.25 kW	0.37 kW	0.55 kW	0.75 kW
(4-pole standard motor) 240 V	${ }^{1} / 3 \mathrm{hp}$	$1 / 2 \mathrm{hp}$	$3 / 4 \mathrm{hp}$	1 hp
Mains phases Number	$1 / 3 \mathrm{AC}$			
Mains voltage	$200 . . .240 \mathrm{~V}, \pm 10 \%, 47 \ldots 63 \mathrm{~Hz}$			
Output voltage	3 AC 0 - Mains voltage			
Nominal output current at 230V rms [A]	1.7	2.2	3.0	4.0
Min. braking resistor Accessories	240Ω	190Ω	140Ω	100Ω
$\begin{array}{\|ll\|} \hline \text { Typical current at } 230 \mathrm{~V} \quad 1 / 3 \mathrm{AC} \\ & \mathrm{rms}[\mathrm{~A}] \\ \hline \end{array}$	3.7 / 2.4	4.8 / 3.1	6.5 / 4.2	8.7 / 5.6
Rec. mains fuse $1 / 3 \mathrm{AC}$ slow-blow $[\mathrm{A}]$	10 / 10	10 / 10	16 / 10	16 / 10
Type of ventilation	Free convection			
Weight approx. [kg]	1.4			

Size $2 / 3$					
Device type: SK 5xxE...	-111-323-A	-151-323-A	-221-323-A	-301-323-A	-401-323-A
Nominal motor power	1.1 kW	1.5 kW	2.2 kW	3.0 kW	4.0 kW
(4-pole standard motor) 240V	$11 / 2 \mathrm{hp}$	2 hp	3 hp	4 hp	5 hp
Mains phases Number	$1 / 3 \mathrm{AC}$			3 AC	
Mains voltage	$200 \ldots 240 \mathrm{~V}, \pm 10 \%, 47 \ldots 63 \mathrm{~Hz}$				
Output voltage	3 AC 0 - Mains voltage				
Nominal output current at 230V rms [A]	5.5	7.0	9.0	12.5	16.0
min. brake resistor Accessories	75Ω	62Ω	46Ω	35Ω	26Ω
$\begin{array}{lll}\text { Typical input current at } 230 \mathrm{~V} & 1 / 3 \mathrm{AC} & \\ & \mathrm{rms} \mathrm{[A]}\end{array}$	12.0 / 7.7	15.2 / 9.8	19.6 / 13.3	17.5	22.4
Recommended mains fuse $1 / 3 \mathrm{AC}$ slow-blowing $[\mathrm{A}]$	16 / 16	20 / 16	$25 / 20$	20	25
Type of ventilation		Fan coolin	(temperature ching thresho C OFF	ntrolled) $47^{\circ} \mathrm{C}$	
Weight approx. [kg]		1.8			

Size 5 / 6				
Device type:	SK 5x5E...	-551-323-A	-751-323-A	-112-323-A
Nominal motor power	230 V	5.5 kW	7.5 kW	11.0 kW
(4-pole standard motor)	$240 \mathrm{~V}$	$71 / 2 \mathrm{hp}$	10 hp	15 hp
Mains phases	Number	3 AC		
Mains voltage		$200 \ldots 240 \mathrm{~V}, \pm 10 \%, 47 \ldots 63 \mathrm{~Hz}$		
Output voltage		3 AC 0 - Mains voltage		
Nominal output current at 230V	rms [A]	20.0	27.0	40.0
min. brake resistor	Accessories	19Ω	14Ω	10Ω
Typical input current at 230 V	$3 \mathrm{AC}$ rms [A]	28.0	38.0	56.0
Recommended mains fuse	$3 \mathrm{AC}$ slow-blowing [A]	35	50	63
Type of ventilation		Fan cooling (temperature-controlled) Switching thresholds: $\mathrm{ON}=57^{\circ} \mathrm{C}$ OFF $=47^{\circ} \mathrm{C}$		
Weight	approx. [kg]			10.3

7.4 Electrical data 400V

Size 1 / 2					
Device type: SK 5xxE...	-550-340-A	-750-340-A	-111-340-A	-151-340-A	-221-340-A
Nominal motor power 400V	0.55 kW	0.75 kW	1.1 kW	1.5 kW	2.2 kW
(4-pole standard motor) 480V	$3 / 4 \mathrm{hp}$	1 hp	$11 / 2 \mathrm{hp}$	2 hp	3 hp
Mains phases Number	3 AC				
Mains voltage	380 ... 480V, -20% / +10\%, $47 \ldots 63 \mathrm{~Hz}$				
Output voltage	3 AC 0 - Mains voltage				
Nominal output current at 400V rms [A]	1.7	2.3	3.1	4.0	5.5
Min. braking resistor Accessories	390Ω	300Ω	220Ω	180Ω	130Ω
Typical input current at 400V rms [A]	2.4	3.2	4.3	5.6	7.7
Recommended mains fuse slow-blowing [A]	10	10	10	10	10
Type of ventilation	Free convection			Fan cooling (temperaturecontrolled) Switching thresholds: $\mathrm{ON}=57^{\circ} \mathrm{C}$ OFF $=47^{\circ} \mathrm{C}$	
Weight approx. [kg]	1.4		1.8		

Size 3 / 4				
Device type: SK 5xxE...	-301-340-A	-401-340-A	-551-340-A	-751-340-A
Nominal motor power 400V	3.0 kW	4.0 kW	5.5 kW	7.5 kW
(4-pole standard motor) 480V	4 hp	5 hp	$71 / 2 \mathrm{hp}$	10 hp
Mains phases Number	3 AC			
Mains voltage	380 ... 480V, -20% / +10\%, $47 \ldots 63 \mathrm{~Hz}$			
Output voltage	3 AC 0 - Mains voltage			
Nominal output current at 400V rms [A]	7.5	9.5	12.5	16.0
min. brake resistor Accessories	91Ω	75Ω	56Ω	43Ω
Typical input current at 400V rms [A]	10.5	13.3	17.5	22.4
Recommended mains fuse slow-blowing [A]	16	16	20	25
Type of ventilation	Fan cooling (temperature-controlled) Switching thresholds: $\mathrm{ON}=57^{\circ} \mathrm{C}$ OFF $=47^{\circ} \mathrm{C}$			
Weight approx. [kg]	2.7		3.1	

Size 5 / 6				
Device type: SK 5x5E...	-112-340-A	-152-340-A	-182-340-A	-222-340-A
Nominal motor power 400V	11.0 kW	15.0 kW	18.0 kW	22.0 kW
(4-pole standard motor) 480V	15 hp	20 hp	25 hp	30 hp
Mains phases Number	3 AC			
Mains voltage	380 ... 480V, -20% / +10\%, $47 \ldots 63 \mathrm{~Hz}$			
Output voltage	3 AC 0 - Netzspannung			
Nominal output current at 400V rms [A]	23.0	30.0	37.0	45.0
min. brake resistor Accessories	29Ω	23Ω	18Ω	15Ω
Typical input current at 400V rms [A]	32.0	42.0	52.0	63.0
Recommended mains fuse slow-blowing [A]	35	50	63	63
Type of ventilation	Fan cooling (temperature-controlled) Switching thresholds: $\mathrm{ON}=57^{\circ} \mathrm{C}$ OFF $=47^{\circ} \mathrm{C}$			
Weight approx. [kg]	8		10.3	

7.5 Electrical data for UL certification

The data given in this section must be taken into account to comply with UL certification.
"Suitable for use on a circuit capable of delivering not more than 5000 rms symmetrical Amperes, 120 Volts maximum (SK $5 x x E-x x x-112$), 240 Volts maximum (SK $5 x x E-x x x-323$), or 480 Volts maximum (SK 5xxE-xxx340), or 500 Volts maximum (SK $5 x x E-x x x-350$) and minimum one of the two following alternatives."

Electrical data 115V

Size 1-115V mains

Device type:	SK 5xxE...	-250-112-0	-370-112-0	-550-112-0	-750-112-0
Nominal motor	power110V	0.25 kW	0.37 kW	0.55 kW	0.75 kW
(4-pole standar	d motor) 120 V	$1 / 3 \mathrm{hp}$	$1 / 2 \mathrm{hp}$	$3 / 4 \mathrm{hp}$	1 hp
FLA	1 AC [A]	7.7 A	9.5 A	12.5 A	17.3 A
Recommended mains fuse	J Class Fuse, 600V	10 A	13 A	20 A	25 A
	Bussmann B or G	LPJ-10SP	LPJ-13SP	LPJ-20SP	LPJ-25SP

Electrical data 230V

Size 1-230V mains				
Device type: SK 5xxE...	-250-323-A	-370-323-A	-550-323-A	-750-323-A
Nominal motor power 220 V	0.25 kW	0.37 kW	0.55 kW	0.75 kW
(4-pole standard motor) 240 V	$1 / 3 \mathrm{hp}$	$1 / 2 \mathrm{hp}$	$3 / 4 \mathrm{hp}$	1 hp
FLA 3/1 AC [A]	3/4	4/5	5/7	6/9
J Class Fuse, 600V	21⁄2A/4A	$3112 \mathrm{~A} / 5 \mathrm{~A}$	$41 / 2 \mathrm{~A} / 7 \mathrm{~A}$	$6 \mathrm{~A} / 9 \mathrm{~A}$
mains fuse mussmann B or G	$\begin{gathered} \text { LPJ-2½SP / } \\ \text { LPJ-4SP } \end{gathered}$	$\begin{gathered} \text { LPJ-3½SP / } \\ \text { LPJ-5SP } \end{gathered}$	LPJ-41/2SP / LPJ-7SP	LPJ-6SP / LPJ-9 SP

Size 5 / 6-230V mains

Device type: SK 5xxE...	-551-323-A	-751-323-A	-112-323-A		
Nominal motor power 220 V	5.5 kW	7.5 kW	$11,0 \mathrm{~kW}$		
(4-pole standard motor) 240 V	$71 / 2 \mathrm{hp}$	10 hp	15 hp		
FLA 3/1 AC [A]					
Recommended J Class Fuse, 600V					
mains fuse Bussmann B or G					

Electrical data 400V

7.6 General conditions for ColdPlate technology

The standard frequency inverter is supplied with a smooth flat mounting surface instead of a heat sink. This means that the FI must be cooled via the mounting surface, but has a low installation depth.
For all devices there is no fan.
In the selection of a suitable cooling system (e.g. liquid-cooled mounting plate) the thermal resistance $R_{t h}$ and the heat to be dissipated from the P_{v} modulus of the frequency inverter must be taken into account. For example, the supplier of the appropriate control cabinet system can provide details for the correct selection of the mounting plate.
The mounting plate has been correctly selected if its $R_{t h}$ value is less than the values stated below.

NOTE: Before the device is fitted to the mounting plate, any protective film must be removed. A suitable heat-conducting paste must be used.

1~ 115V- devices	$\mathbf{P}_{\mathbf{v}}$ modulus [W]	Max. $\mathbf{R}_{\text {th }}$ [K/W]
SK 5xxE-250-112-O-CP	8.51	3.29
SK 5xxE-370-112-O-CP	11.29	2.48
SK 5xxE-550-112-O-CP	15.98	1.75
SK 5xxE-750-112-O-CP	22.27	1.26

1/3~ 230V devices	P $_{\mathbf{v}}$ modulus [W]	Max. \mathbf{R}_{th} [K/W]
SK 5xxE-250-323-A-CP	10.48	2.67
SK 5xxE-370-323-A-CP	14.11	1.98
SK 5xxE-550-323-A-CP	20.38	1.37
SK 5xxE-750-323-A-CP	29.09	0.96
SK 5xxE-111-323-A-CP	44.04	0.48
SK 5xxE-151-323-A-CP	55.08	0.38
SK 5xxE-221-323-A-CP *	67.96	0.31
SK 5xxE-301-323-A-CP	83.37	0.25
SK 5xxE-401-323-A-CP	113.88	0.18

*) NOTE: In contrast to the standard device, SK 500E-221-323-A-CP for S1 operation can only be supplied in size 3 .

3~ 400V- devices	\mathbf{P}_{v} modulus [W]	Max. R_{th} [K/W]
SK 5xxE-550-340-A-CP	11.88	2.36
SK 5xxE-750-340-A-CP	16.57	1.69
SK 5xxE-111-340-A-CP	23.22	1.21
SK 5xxE-151-340-A-CP	31.24	0.90
SK 5xxE-221-340-A-CP	45.91	0.46
SK 5xxE-301-340-A-CP	64.60	0.33
SK 5xxE-401-340-A-CP	86.61	0.24
SK 5xxE-551-340-A-CP	101.73	0.21
SK 5xxE-751-340-A-CP	134.95	0.16

The following points must be complied with to ensure the R_{th} :

- The maximum heat sink temperature $\left(T_{k k}\right)$ of $80^{\circ} \mathrm{C}$ and the maximum internal temperature of the control cabinet ($\mathrm{T}_{\text {amb }}$) of $40^{\circ} \mathrm{C}$ must not be exceeded.
- The ColdPlate and the mounting plate must lie flat against each other (max.air gap 0.05mm).
- The contact area of the mounting plate must be at least as large as the area of the ColdPlate
- A suitable heat conducting paste must be applied between the ColdPlate and the mounting plate. The heat conducting paste is not included in the scope of delivery! First remove any protective film.
- All screw connections must be tightened.
- When designing a cooling system the heat to be dissipated by the ColdPlate device, P_{v}-modulus must be taken into account. For the design of the control cabinet the heat production of the device of approx 5% of the nominal power must be taken into consideration.

In case of any further queries, please contact Getriebebau NORD.

8 Additional information

8.1 Setpoint processing in the SK 500E

8.2 Process controller

The process controller is a PI controller which can be used to limit the controller output. In addition, the output is scaled as a percentage of a master setpoint. This provides the option of controlling any downstream drives with the master setpoint and readjusting using the PI controller.

Fig.: Flow diagram process controller

8.2.1 Process controller application example

potentiometer
$0-10 \mathrm{~V}$

8.2.2 Process controller parameter settings

(Example: setpoint frequency: 50 Hz , control limits: +/- 25\%)

$$
\begin{array}{ll}
\text { P105 (maximum frequency) }[\mathrm{Hz}] & : \geq \text { Setpointfrq. }[\mathrm{Hz}]+\left(\frac{\text { Setpointfrq. }[\mathrm{Hz}] \times P 415[\%]}{100 \%}\right) \\
& \text { Example: } \geq 50 \mathrm{~Hz}+\frac{50 \mathrm{~Hz} \times 25 \%}{100 \%}=62.5 \mathrm{~Hz} \\
\text { P400 (Funct. analog input) } & : \text { "4" (frequency addition) } \\
\text { P411 (setpoint frequency) }[\mathrm{Hz}] & : \text { Set frequency with } 10 \mathrm{~V} \text { at analog input } 1 \\
& \text { Example: } 50 \mathrm{~Hz}
\end{array}
$$

P412 (Process controller setpoint): CR middle position / Default setting 5V V (adapt if necessary)
P413 (P controller) [\%] : Default setting 10\% (adapt if necessary)
P414 (l-controller) [\% / ms] : recommended 100\%/s
P415 (limitation +/-) [\%] : Controller limitation (see above)
Note: In the function process controller, parameter P415 is used as a controller limiter downstream from the PI controller. This parameter therefore has a double function.

Example: 25\% of setpoint

[^4]
8.3 Electromagnetic compatibility Abbreviation: EMC)

All electrical equipment that have an intrinsic, independent function and are placed on the market as individual units for users from January 1996 must comply with the EEC directive EEC/89/336EEC . There are three different ways for manufacturers to display compliance with this directive:

1. EC declaration of conformity

This is a declaration from the manufacturer stating that the requirements in the applicable European standards for the electrical environment of the equipment have been met. Only those standards which are published in the Official Journal of the European Community can be cited in the manufacturer's declaration.
2. Technical documentation

Technical documentation can be produced which describes the EMC characteristics of the device. This documentation must be authorised by one of the "Responsible bodies" named by the responsible European government. This makes it possible to use standards that are still under preparation.
3. EC type test certificate (This method only applies to radio transmitter equipment.)

SK 500E frequency inverters only have an intrinsic function when they are connected to other equipment (e.g. with a motor). The base units cannot therefore carry the CE mark that would confirm compliance with the EMC directive. Precise details are therefore given below about the EMC behaviour of this product, based on the proviso that it is installed according to the guidelines and instructions described in this documentation.

Class A, Group 2: General, for industrial environments

Complies with the EMC standard for power drives EN 61800-3, for use in secondary environments (industrial) and if not generally available.

Class A, Group 1: Interference suppressed, for industrial environments

In this operating class, the manufacturer can certify that his equipment meets the requirements of the EMC directive for industrial environments with respect to their EMC behaviour in power drives. The limit values correspond to the basic standards EN 61000--62 and EN 61000-6-4 for interference immunity and interference emissions in industrial environments.

Class B, Group 1: Interference suppressed for domestic, commercial and light industry environments

In this operating class, the manufacturer can certify that his equipment meets the requirements of the EMC directive for domestic, commercial and light industry environments with respect to their EMC behaviour in power drives. The limit values correspond to the basic standards EN 61000--62 and EN 61000-6-4 for interference immunity and interference emissions.

NORDAC SK 500E Frequency inverters are intended exclusively for commercial use. They are therefore not subject to the requirements of the standard EN 61000-3-2 for radiation of harmonics.
This device produces high frequency interference, which may make additional suppression measures necessary in domestic environments. (Details in Section 8.4)

8.4 EMC limit value classes

Please note that these limit value classes are only reached if the standard pulse frequency $(6 \mathrm{kHz})$ is being used and the length of the shielded motor cable does not exceed the permissible limits.

In addition, it is essential to use wiring suitable for EMC. The motor cable shielding must be applied on both sides (frequency inverter shield angle and the metal motor terminal box).

Device type Max. motor cable, shielded	Jumper position See Section $2.8 .6-2.8 .7$		Cable emissions 150kHz - 30 MHz	
	Class A 1	Class B 1		
SK 5xxE-250-323-A ... SK 5xxE-401-323-A	$2-1$	20 m	5 m	
	$2-2$	5 m	-	
SK 5xxE-550-340-A ... SK 5xxE-751-340-A	$2-1$	20 m	5 m	
	$2-2$	5 m	-	

Overview of the standards, which according to product standard EN 61800-3 are applicable as testing and measuring methods for electric drives whose speed can be altered:

Interference emission

Emission from cables (interference voltage)	EN 55011	A 1
		B 1
Radiated emissions (Interference field strength)	EN 55011	A 1
		-
Interference immunity EN 61000-6-1, EN 61000-6-2		
ESD, discharge of static electricity	EN 61000-4-2	6 kV (CD), 8 kV (AD)
EMF, high frequency electro-magnetic fields	EN 61000-4-3	10V/m; 80-1000MHz
Burst on control cables	EN 61000-4-4	1kV
Burst on mains and motor cables	EN 61000-4-4	2kV
Surge (phase-phase / phase-ground)	EN 61000-4-5	$1 \mathrm{kV} / 2 \mathrm{kV}$
Cable-led interference due to high frequency fields	EN 61000-4-6	$10 \mathrm{~V}, 0.15-80 \mathrm{MHz}$
Voltage fluctuations and drops	EN 61000-2-1	+10\%, -15\%; 90%
Voltage asymmetries and frequency changes	EN 61000-2-4	3\%; 2\%

Wiring recommendations

8.5 Reduced output power

The SK 5xxE frequency inverter series is designed for certain overload situations. For example, 1.5x overcurrent can be used for 60 sec . For approx. 3.5 sec a $2 x$ overcurrent is possible. A reduction of the overload capacity or its time must be taken into account in the following circumstances:
o Output frequencies $<2 \mathrm{~Hz}$ and constant voltages (needle stationary)
o Pulse frequencies greater than the nominal pulse frequency (P504)
o Increased mains voltage $>400 \mathrm{~V}$
o Increased heat sink temperature
On the basis of the following characteristic curves, the particular current / power limitation can be read off.

8.5.1 Increased heat dissipation due to pulse frequency

This illustration shows how the output current must be reduced, depending on the pulse frequency for 230 V and 400 V devices, in order to avoid excessive heat dissipation in the frequency inverter.
For 400 V devices, the reduction begins at a pulse frequency above 6 kHz . For 230 V devices, the reduction begins at a pulse frequency above 8 kHz .
Even with increased pulse frequencies the frequency inverter is capable of supplying its maximum peak current, however only for a reduced period of time. The diagram shows the possible current load capacity for continuous operation.

8.5.2 Reduced overcurrent due to time

The possible overload capacity changes depending on the duration of an overload. Several values are cited in this table. If one of these limiting values is reached, the frequency inverter must have sufficient time (with low utilisation or without load) in order to regenerate itself.
If operated repeatedly in the overload region at short intervals, the limiting values stated in the tables are reduced.

230V devices: Reduced overload capacity (approx.) due to pulse frequency (P504) and time

Pulse frequency [kHz]	Time [s]					
	>600	60	30	20	10	3.5
$3 \ldots 8$	110%	150%	170%	180%	180%	200%
10	103%	140%	155%	165%	165%	180%
12	96%	130%	145%	155%	155%	160%
14	90%	120%	135%	145%	145%	150%
16	82%	110%	125%	135%	135%	140%

400V devices: Reduced overload capacity (approx.) due to pulse frequency (P504) and time

Pulse frequency [kHz]	Time [s]					
	>600	60	30	20	10	3.5
$3 \ldots 6$	110%	150%	170%	180%	180%	200%
8	100%	135%	150%	160%	160%	165%
10	90%	120%	135%	145%	145%	150%
12	78%	105%	120%	125%	125%	130%
14	67%	92%	104%	110%	110%	115%
16	57%	77%	87%	92%	92%	100%

8.5.3 Reduced overcurrent due to output frequency

To protect the power unit at low output frequencies $(<4.5 \mathrm{~Hz})$ a monitoring system is provided, with which the temperature of the IGBTs (integrated gate bipolar transistor) due to high current is determined. In order to prevent current being taken off above the limit shown in the diagram, a pulse switch-off (P537) with a variable limit is introduced. At a standstill, with 6 kHz pulse frequency, current above 1.1 x the nominal current cannot be taken off.

The upper limiting values for the various pulse frequencies can be obtained from the following tables. In all cases, the value ($0.1 \ldots 1.9$) which can be set in parameter P537, is limited to the value stated in the tables according to the pulse frequency. Values below the limit can be set as required.

230V devices: Reduced overload capacity (approx.) due to pulse frequency (P504) and output frequency

Pulse frequency $[\mathrm{kHz}]$	Output frequency $[\mathrm{Hz}]$									
	4.5	3.0	2.0	1.5	1.0	0.5	0			
$3 . .8$	200%	170%	150%	140%	130%	120%	110%			
10	180%	153%	135%	126%	117%	108%	100%			
12	160%	136%	120%	112%	104%	96%	95%			
14	150%	127%	112%	105%	97%	90%	90%			
16	140%	119%	105%	98%	91%	84%	85%			

400V devices: Reduced overload capacity (approx.) due to pulse frequency (P504) and output frequency

Pulse frequency $[\mathrm{kHz}]$	Output frequency $[\mathrm{Hz}]$						
	4.5	3.0	2.0	1.5	1.0	0.5	0
$3 \ldots 6$	200%	170%	150%	140%	130%	120%	110%
8	165%	140%	123%	115%	107%	99%	90%
10	150%	127%	112%	105%	97%	90%	82%
12	130%	110%	97%	91%	84%	78%	71%
14	115%	97%	86%	80%	74%	69%	63%
16	100%	85%	75%	70%	65%	60%	55%

8.5.4 Reduced output current due to mains voltage

The devices are designed with thermal characteristics according to the nominal output currents. Accordingly, for lower mains voltages, higher currents cannot be taken off in order to maintain the stated power constant. For mains voltages above 400 v there is a reduction of the permissible continuous output current, which is inversely proportional to the mains voltage, in order to compensate for the increased switching losses

8.5.5 Reduced output current due to the heat sink temperature

The temperature of the heat sink in included in the calculation of the reduction of output current, so that at low heat sink temperatures, a higher load capacity can be permitted, especially for higher pulse frequencies. At high heat sink temperatures, the reduction is increased correspondingly. The ambient temperature and the ventilation conditions for the device can therefore be optimally exploited.

8.6 Operation with FI circuit breakers

SK 500E frequency inverters are designed for operation with a 30 mA all-current sensitive FI circuit breaker. If several frequency inverters are operated on a single FI circuit breaker, the leakage currents to earth must be reduced. Further details can be found in Section 2.11.9-2.11.10.

8.7 Maintenance and servicing information

In normal use, NORDAC 500E frequency inverters are maintenance free. Please note the "general data" in Section 7.1.

If the frequency converter is being used in a dusty environment, then the cooling-vane surfaces should be regularly cleaned with compressed air. If air intake filters have been built into the control cabinet, then these should also be regularly cleaned or replaced.
If you contact our technical support, please have the precise device type (rating plate/display), accessories and/or options, the software version used (P707) and the series number (rating plate) at hand.

Repairs

The device must be sent to the following address if it needs repairing:

NORD Electronic DRIVESYSTEMS GmbH

Tjüchkampstraße 37
26605 Aurich, Germany

For queries about repairs, please contact:

Getriebebau NORD GmbH \& Co. KG

Telephone: 04532 / 401-515
Fax: 04532 / 401-555

If a frequency inverter is sent in for repair, no liability can be accepted for any added components, e.g. such as mains cables, potentiometer, external displays, etc.!

Please remove all non-original parts from the frequency inverter.

NOTE | If possible, the reason for returning the component/device should be stated. If necessary, at least |
| :--- |
| one contact should be stated in case of queries. |
| This is important in order to keep repair times as short and efficient as possible. |
| On request you can also obtain a suitable return good voucher from Getriebebau NORD. |

Internet information

You can find the comprehensive manuals in German and in English on our Internet site.
www.nord.com

You can also obtain this manual from your local representative if necessary.

9 Keyword index

$$
3
$$

$$
\text { 3-Wire-Control............................. } 111
$$

A
Accessories.................................... 9
Adapter cable RJ12 45, 49
Additional parameters 120
Array Parameter 68
Array- Parameter 55, 60
AS Interface 77
B
Baking resistor 32
Basic parameters 79, 86
Brake chopper 22, 32
Brake control 88
Brake resistor 22
Brake ventilation time 91
Braking distance 89
Braking resistor 151, 153
Breaking control 91
Brief instructions 79
C
Cable duct 13
CANbus 45, 49
CANopen 45, 49, 75
CE mark 164
Charging error 146
ColdPlate $7,8,12,15,17,157$
Commissioning. 78
Condition on delivery 79
Connection data 31
Connection of the control unit 39
Connection of the control unit SK 5x0E 42
Connection of the control unit SK $5 \times 5 \mathrm{E}$ 46
Control parameters 98
Control terminals 101
Control voltage 33
CSA 11
cUL 11
Current vector control 96
D
DC Brake 89
DC-coupling 35
DeviceNet 76
Digital inputs 110
Dimensions 14, 15
Direct current braking 89
Display and operation 52, 145
Dissipated heat 13
Distance calculator. 89
DS-standard motor 92
Dynamic braking 22
E
EC declaration of conformity 164
EEC-Directive EEC/89/336 164
Efficiency 13
Electrical connection 29
Electrical data 115V 151
Electrical data 230 V 151
Electrical data 400 V 153
EMC directive. 11
EMC standard 164
EMV- Kit. 21
EN 61000 165
EN 61800-3 165
Encoder 50
Errors 145
External control voltage 33
External heat sink technology$7,8,15,17,18$
F
FI circuit-breaker 10, 37, 169
Functional safety 34
H
Heat dissipation 13
HTL encoder. 112, 116
I
$I^{2} t$ limit 146
IEC 61800-3 11
Incremental encoders 50
Information. 131
Input monitoring 125
Installation 13
Installation information 10
InterBus 76
Interference emission 165
Interference immunity 165
Internet 170
ISD control 96
IT networks 31, 36, 37
JJumper36
K
KTY8480, 84, 102
L
Leading function 120
Leakage current 37
Lifting equipment with brake 88
Line choke 25
Linear rev./f. characteristic curve. 96
Load drop 88
Load factory settings 124
Long-term storage 150
Low voltage guideline 2
M
Magnetizing 95
Mains supply 31
Mains voltage monitoring 125
Master-Slave 120
Menu group 82
Menu structure ParameterBox. 70
Minimum configuration 79
Modulation degree 95
Motor cable / length 32
Motor cables 27
Motor data 78, 92
Motor list 92
Motor Temperatur 102
Motor temperature 80, 84
Motor thermistor 33
Motor type 7
Multi-function relay 31
Multiple motor use 32
0
OFF 146
Operating displays 84
Operating time 133
Oscillation damping 95
Output choke 27
Output monitoring 125
Overcurrent 146
Overtemperature 145
Overvoltage 146
Overvoltage switch-off 22
P
Parameter identification 97
Parameter loss 147
Parameter monitoring 138
ParameterBox 62
ParameterBox parameters 69
Parameterisation 59, 82
PC-Slave 72
PI- process controler 162
Posicon 131
PotentiometerBox. 128
Power limitation 166
Power-up cycles. 150
Process controller 102, 112, 118, 162
Profibus. 75
Properties 8
PTC connection 33
Pulse frequency 120
Pulse switch-off 124, 125
Q
Queries. 170
R
Rating plate 78
Reduced output power 166
Remote control 110
RJ12. 45, 49
RJ45 45, 49
Rotation direction 126
Rotation speed 135
S
Safe pulse block. 34
Safety instructions 2
Select language 65
Setpoint card $\pm 10 \mathrm{~V}$ 51
Setpoint processing. 160
Setup altitude 150
SK BR2- / SK BR4- 23
SK CI1 25
SK CO1- 27
SK EMC 1 21
SK TU3-CTR 56
SK TU3-PAR 62
Slip compensation 94
Speed 127
Speed measurement with HTL encoder 112, 116
Standard design 9
Storage 150
Synchronising devices 30
System error 149
T
Technical data 150
Technology unit 9
Temperature switch 22
Temperature, Motor 80
Terminal blocks 40, 41
Thermistor. 33
Tightening torque 31
Torque current limit 90
Torque precontrol 94
TTL encoder. 50
Type code 12
U
UL154
UL approval. 11
USS Time Out 147
V
Vector control. 96
Ventilation 13
w
Watchdog 116
Weight. 14, 20
Wiring guidelines. 28

[^0]: (As supplied, for commissioning without safety switching device, terminals 87-88 and 86-89 are bridged. In order to be able to use the safety function, the bridges must be removed.)

[^1]: ***These settings are dependent on the nominal power of the FI or the selection in parameter P200.

[^2]: ${ }^{* * *}$ These settings are dependent on the nominal power of the FI or the selection in parameter P200.

[^3]: ${ }^{1}$ The assignment of the dig. inputs in P543/544/545 $=5$

 | Bit $0=$ Digln 1 | Bit $1=$ Digln 2 | Bit $2=$ Digln 3 | Bit $3=$ Digln 4 |
 | :--- | :--- | :--- | :--- |
 | Bit $4=$ Digln 5 | Bit $5=$ Digln $6($ SK 520/53xE) | Bit $6=$ Digln $7($ SK 520/53xE) | Bit $7=$ reserved |
 | Bit $8=$ reserved | Bit $9=$ reserved | Bit 10 = reserved | Bit $11=$ reserved |
 | Bit 12 = Out 1 | Bit 13 = Out 2 | Bit 14 = Out 3 (SK 520/53xE) | Bit 15 = Out 4 (SK 520/53xE) |

[^4]: P416 (ramp before controller) [s] : Default setting 2s (if necessary, adjust to controller behaviour)
 P420 (Funct. digital input 1) : "1" Enable right
 P405 (Funct. Analoginput 2) : "14" actual value PID process controller

