USEFUL MAGNETIC FORMULAE

Area of Cores with Rectangular Cross Section Afe

 $A_{fe} = E_{min} \times D_{min} \times K$

Mean Magnetic Path Length (L_m) for 'C' Cores $L_m = A_{max} + B_{max} + F_{min} + G_{min} - 1.72 (R + \frac{E_{max}}{2})$

Core Weight (M_{fe})

 $M_{fe} = A_{fe} \times L_m \times 7.65 \ 10^{-6}$

Where

- = Cross sectional Area (mm^2) A_{fe}
- = Mean Magnetic Path Length (mm) L_m
- M_{fe} = Core Weight (Kg)
- = Overall Core Width (mm) А
- = Overall Core Length (mm) В
- D = Strip Width (mm)
- = Build Up (mm) Е
- F = Core Window Width (mm)
- G = Core Window Length (mm)
- R = Inner Radius (mm)
- К = Stacking Factor
 - = 0.95 for 0.3mm Strip
 - = 0.92 for 0.1mm Strip
 - = 0.88 for 0.05mm Strip

- н
- $= \mu_0 \mu_r$ (3) μ
- Where B = Induction in Tesla (Webers per Sq. Metre)
 - H = Magnetising Force in Amps/Metre
 - μ = Permeability
 - μ_0 = Permeability of free space ($4\pi \times 10^{-7}$)
 - μ_r = Relative Permeability
 - I = Current in Amps
 - N = Number of turns
 - L_m = Magnetic Path Length in Metres

Modules of Complex Permeability

$$\mu = \frac{B_{max}}{H_{peak}} = \frac{B_{max}}{H_{rms} x \sqrt{2}}$$

Effective Permeability p

$$\mathsf{P} = \frac{\mathsf{B}_{\max}}{\mathsf{H}_{\mathrm{rms}}}$$

Transformer Equation

For 50 hz sine wave, this reduces to $V = 222 \times B_m \times A_{fe} \times N$

Inductance

Inductance in Henries =
$$\frac{4\pi X N^2 X A_{fe} X \mu_r}{10^7 X L_m}$$

Where N = Number of Turns A_{fe} = Cross Sectional Area of Iron M² μ_r = Relative Permeability

 $L_m = Magnetic Path Length in metres$