Colter Group

FMT/BIS Training Manual

Colter Group Ltd

Unit 7 Zone C, Chelmsford Road Industrial Estate, Dunmow, Esse

Tel: 01371 876887 Fax: 01371 875638 Email: sales@coltergroup.co.u

L - LCUIILeIIw

X, CM6 1

HD

LIl BIVuUp 1idirty iviariudi

Contents

Contents 2
FMT/BIS Products 4
FMT-100A and FMT-100B 4
FMT-100C and FM T-100D 4
FMT-100E and FM T-100F 4
FMT-100J 4
FMT-200D 4
FMT-200J 4
B1S-100 4
FMT-400 5
Controller Features 6
Facilities 7
I nternal Operation 8
Flex32 programming package 9
Project Configuratio 9
Symbol Name 20
Text String Editor 21
Ladder Module Editor 21
Instruction Module 22
PID 27
Project Compile & Download (the 'RUN' button) 32
Facility Usage 33
Debugging Screens 33
Programming L ead 40
Help 40
Ladder Functions 41
Ladder Example 42
I nstruction Language 43
I nstruction Functions 44
I nstruction Example 45
Additional Examples 46
Example 1 46
Example 2 47
Example 3 48
Example 4 49

2 - Contents

Colter Group Training Manual

Example 5 50
Example 6 51
Example 7 52
Appendix A - Serial Communications 53
Communication Parameters... 53
Electrical signals 53
Appendix B — ASCII Table 53
Appendix C — Ziegler - Nichols Closed Loop Tuning 55
Example 1 — Worked Answer 56
Example 2 — Worked Answer 57
Example 3 — Worked Answer 60
Example 4 — Worked Answer 62
Example 5 — Worked Answer 64
Example 6 — Worked Answer 66

3 - FMT/BIS Products

Colter Group Training Manual

FMT/BIS Products

FMT-100A and FMT-100B

16 inputs

8 relay outputs

FMT-100C and FMT-100D

16 inputs
16 outputs, PNP 100 mA

FMT-100E and FMT-100F

8 inputs
8 outputs, PNP 500 mA

FMT-100J

4 analogue inputs, 8-bit 0-10v, 0-4v, or 0-20 mA
4 analogue outputs, 8-bit 0-10V and 0-20 mA with JACO

8 digital inputs
5 digital outputs, PNP 100 mA

FMT-200D

48 inputs, 24v bipolar
32 outputs, PNP 500 mA

FMT-200J

8 analogue inputs, 12-bit 0-10v, 0-4v, or 0-20 mA

4 analogue outputs, 12-bit 0-20 mA
32 inputs, 24v bipolar
24 outputs, PNP 500 mA

BIS-100

Plug in Fieldbus Module

4 inputs, 24v bipolar
4 outputs, Relay

4 . FMT/BIS Products Colter Group Training Manual

FMT-400

Expandable rack system with plug-in cards
Up to 1024 digital in and 1024 digital out
Up to 256 analogue in and 256 analogue out

Up to 8 communication ports - 6 as RS485

Up to 4 fieldbus modules
High speed input module

Plug-in Flash card module

5 . FMT/BIS Products Colter Group Training Manual

Controller Features

Opto-isolation on all analogue and digital inputs and outputs.
Real Time Clock.
Communications.

FMT-100
One programming/general purpose RS232

FMT-200
One programming/general purpose RS232
One general purpose RS232
Two general purpose RS232 or RS485

FMT-400
One programming/general purpose RS232
One general purpose RS232
Up to 6 general purpose RS232 or RS485
Up to 4 Fieldbus modules

BIS-100
One programming/general purpose RS232
One general purpose RS232
Two general purpose RS232 or RS485
One Fieldbus modules

PID

Built-in Communication Protocols:
Modbus RTU
Mitsubishi 'Protocol 1'
Linkline and Linkline Plus

LED indication for:

All digital inputs and outputs
System healthy

Serial port activity

Running

High speed features:
Incremental pulse encoder
Up/down counter
Fast edge catching
Interrupt driven instruction module

Data Storage:
Battery backed RAM (all FMT's)
Plug in Flash Card (FMT-200 and 400)

Display and Function Keys (FMT-200 and FMT-400):

Use under program control for error messages, changing set points etc.
View and clear system errors and warnings

Set date and time

Set programming station number

Set or clear I/O forces

Set monitor mode

View analogue inputs

6 - Controller Features Colter Group Training Manual

Facilities
Inputs
Outputs
Analogue Inputs
Analogue Outputs
Flags
Counters 0 - 99,999,999
Timers 0 - 99 hours 59 minutes 59.99 seconds

16-Bit (0 - 65,535) and 32-Bit registers (0 - 4,294,967,295)

Floating Point (9.2e+18 to 5.4e-20 positive or -9.2e+18 to -2.7e-20)
Text strings

Internal registers:
Information: scan time, divide remainder.
Date and Time
Facility preservation during power down
High speed options

Communication Status

Internal Flags:
Clock pulses
Errors and warnings

Communication status

Allocated RAM

Flash Cards

Data Storage

Program Storage

7 - Facilities Colter Group Training Manual

Internal Operation

What is a Project?

What is a Module?
Ladder Modules

Instruction Modules

Principles of Operation
Operation with Ladder modules only
Operation with Instruction modules only

Operation with both Ladder and Instruction modules

Optimising Performance
I/O update time.
I/O used.

8 - Internal Operation Colter Group Training Manual

Flex32 programming package

Project Configuration

The project configuration form is where most of the details for the project are entered. Some configuration can
be made without requiring a full compile and download; these are handled under the On-Line adjustments.

The FMT type, Station number and Description are entered when the project was created, but may be edited
from the 'Project’ page of the main Project Configuration screen.

The available modules, both Ladder and Instruction, can be viewed or added to/removed from the project on

the tabbed pages on the project pages. Source Store downloads the entire project (including comments,
symbol names, and source code) into the non-volatile memory of the FMT.

& Project Configuration

fencsewverram |

Other pages on this form are for configuring:
Rack: Configuration of modules within an FMT-400 rack.

The FMT-400 modular controller requires the arrangement of modules within a rack to be configured as part
of the project.

The FMT-400 system comprises of the Rack (Full or Half rack), the CPU module of your choice, the power
supply and the I/O modules of your choice. After deciding where the Modules should go in the rack they
should be physically placed in their positions (with the power turned OFF).

After the modules have been placed in position you can now begin configuring the FMT-400 using Flex32.
The following screen-shots highlight the key points of configuring the FMT-400:

9 . Flex32 programming package Colter Group Training Manual

The CPU type that is to be used should first be selected from the ‘FMT Type’ drop down menu within the
‘Project’ page of the Flex32 project configuration screen....

| Project Configuration

A FMT-400 CPLI-B
FrT-400 CRPU-C

The rack configuration page is selected by clicking on the ‘Rack’ tab of the project configuration screen....

& Project Configuration

10 - Flex32 programming package Colter Group Training Manual

To change the type or rack click on the edge of the rack at the left hand side of the picture. To change a
module, click on the picture of that module. The Rack Configuration Dialog will appear....

Hack Configuration

Select the new element form the drop down list, then enter the range (if required) in the boxes. The example
above shows a 16 channel input card configured as 10 to [15.

Continue in this way until the rack is complete...

i#. Project Configuration

After the rack configuration is downloaded to the FMT as part of the compile and download process. If the
firmware detects a discrepancy between the actual hardware and the downloaded configuration then an
appropriate warning is raised.

11 - Flex32 programming package Colter Group Training Manual

I/O update: Set the intervals at which the firmware updates the digital and analogue inputs and outputs
These settings control how often the firmware update the I/O hardware.
Digital and Analogue Update Intervals:

If your project uses any ladder modules the the I/O update is handled at the end of every ladder scan and
these settings have no effect.

If your project only uses instruction language modules then you can set the number of milliseconds between
I/O updates depending on the nature of your application. The more often you update the I/O the slower the
code will execute. Setting the 1/O interval to 0 will update the 1/0 in between every line of code, this gives the
fastest 1/0 update but the slowest code execution.

Number of Inputs and Outputs Used:

When set to zero the firmware will update all the analogue and digital I/O. In some applications where 1/O is
not used you can set the number of each facility you wish to be processed; other facilities outside of this range
will be ignored and seen by the program as always off.

12 . Flex32 programming package Colter Group Training Manual

Comms: The settings of the FMT communication ports.

All FMT and BIS controllers have serial communication ports; This screen is where you can set up the
communications parameters for each of the comms ports on the controller you are using.

. Project Conhiguration

e e

Select the port you wish to configure by clicking on the buttons labelled Port0 to Port7. Only the buttons for
the ports available on the controller you are using will be enabled.

Select the baud rate, number of data bits, number of stop bits, and parity from the radio button boxes.

Select the protocol from the right hand radio button box; If you with to drive the communication port using the
serial-in and text commands from either the Ladder or Instruction modules then select 'User Code', otherwise
select one of the build in protocols from the list.

Notes: Project notes editor.

You can make helpful notes about your project using the Project Notes feature of Flex32.
To make notes about you project:

Click on the 'Notes' page of the Project Configuration Screen. Type your notes in the available space. Your
project notes will be saved when you next save the project configuration (click the 'Save' button on the Project
Configuration Screen) or save the entire project (click 'Save Project' from the file drop down menu).

13 . Flex32 programming package Colter Group Training Manual

Preserve: Select which FMT facilities are preserved and which are cleared on start-up

High Speed: Configure the FMT high speed inputs for counters, encoders etc.

The FMT-100 and FMT-200 hardware include circuitry to process high speed events on selected inputs.
These inputs can be configured to implement one of the following high speed facilities.

Incremental Pulse Encoder.

High Speed Counter.

Fast Edge Catching

Event driven user instruction program

The FMT-100's support two high speed inputs (10 and I11) using WO as a 32-bit counter to hold the total. The
FMT-200's support eight inputs (10 - 17) using WO - W3 as counters.

The operation of the high speed features is set-up in the 'High Speed' page of the project configuration
screen.

14 . Flex32 programming package Colter Group Training Manual

Incremental pulse encoder

The diagram below shows how to connect an incremental pulse encoder (PNP outputs) to an FMT-100. Note
the use of screened cable to avoid false pulses from electrical noise.

24y
Ll FMT 100
|

There are three options for the resolution with which the FMT will count pulses from a particular encoder.

‘Times one' will count once per encoder cycle, i.e. 100 counts per revolution for a 100 p.p.r. encoder.
‘Times two' will count twice for every cycle, i.e. 200 counts per revolution for a 100 p.p.r. encoder.
"Times four' will count four times for every cycle, i.e. 400 counts per revolution for a 100 p.p.r. encoder.

A A 1A A4 4] 414141

e [T LT LT L L
Times One. Counting only on rising edge of 'A&'

A _AYEYAYAYEYAYAY Y

s [T LTI L LT
Times Two. Counting on both edges of 'A'

A _FYETAYEYAT AT AN Y

B _AY4VAVAYITAVEAYLY

Times Four. Counting on both edges of ' and 'E'

In all cases above, the current total is stored in 32-bit register WO. The value in WO can be read by the
application programme at any time. You can also clear or pre-set the count at any time by moving a number to
WO with a move function.

High speed counter

The high speed counter option is similar to the encoder setting but intended for general purpose counting.
This option can be used to count pulses which are too fast to be reliably counted within the normal loop code.
The 32-bit registers WO to W3 are used to hold the counter value.

There are three high speed options for counters. The examples below are for the first channel using 10 - 11.

Count up only. Each rising edge on input 10 will increase the total in WO by one. Input I1 is unused.

Count down only. Each rising edge on input 10 will decrease the total in WO by one. Input 11 is unused.
Count up and count down. Each rising edge on input 10 will increase the total in WO by one. Each rising edge
on input 11 will decrease the total in WO by one

In all cases above the current total is stored in 32-bit register WO. The value in WO can be read by the
application programme at any time. You can also clear or pre-set the count at any time by moving a number to
WO with a move function.

15 . Flex32 programming package Colter Group Training Manual

24y
+ - FRAT 100
II\'Ii;_l ______________ L IILF;-‘ [] %
=+ o | (2
Phatocel 1 =|@
()
@ (G
=
o
_:—'-"'H-f
Phaotocell 2

Fast pulse catching

In normal operation the code you write for the FMT can only respond to pulses which are longer than the loop
time of the program. For example, if the loop time is 10mS your program will not reliably respond to input
signals unless they are at least 10mS long.

To cope with shorter pulses you can use the high speed features to catch pulses and guarantee they are seen
by at least one application program loop. You can select from the following options...

Catch high speed positive edges on 10 only, 11 unused
Catch high speed positive edges on 10 and 11

Note: The maximum number of lines of code that can be executed is 20, an error will occur for more than
this. Commands that cause execution to stop i.e. wait_for type commands are permitted but not
recommended, execution will be attempted 20 times before an error occurs.

Input interrupt instruction code

A new feature with FLEX32 as part of the instruction language is module execution when an input comes on.
A module is written using the normal suite of instruction commands but the final statement must be a
END_INT command. In addition to selecting the correct setting of the high speed input in the 'High Speed'
page of the project configuration screen it is also necessary to select the operating mode of the module for
input interrupt from the control menu option, for further details please see the Module Control help.

Note: The maximum number of lines of code that can be executed is 20, an error will occur for more than this.
Commands that cause execution to stop i.e. wait_for type commands are permitted but not recommended,
execution will be attempted 20 times before an error occurs.

Maximum values
The following maximum values apply to the high speed features on both FMT-100 and FMT-200 products...

Maximum frequency for counting 10kHz total.
Maximum frequency for encoder 2.5kHz total
Minimum pulse time 50ps.

NOTE: Selecting a high speed option does not affect the normal operation of the input.

Fieldbus: Configure the BIS-100/FMT-400 fieldbus modules

BIS-100 and FMT-400 controllers can be fitted with fieldbus modules for communicating with any of the
standard fieldbus technologies.

16 - Flex32 programming package Colter Group Training Manual

= Project Configuration

SR (| me|rj el

A G E S e

Select the fieldbus port you wish to configure from the buttons labelled FBO to FB3. Only the buttons for the
ports which exist on the controller you are using will be enabled.

For all fieldbus modules except Ethernet you should select 'Normal Fieldbus Operation'. In this mode blocks of
data are transferred between the fieldbus module and FMT/BIS 16-bit registers. Select the start number and
size of the block of registers to be written to from the fieldbus in the first two edit boxes, and the start number
and size of the block of FMT/BIS registers to be written out to the fieldbus. You can also select the interval in
milliseconds between transfers to/from the fieldbus unit.

In the example below, registers R100 to R119 are written to with data from the fieldbus every 10ms. Registers
R200 to R209 are read and sent out to the fieldbus module every 10ms.

17 - Flex32 programming package Colter Group Training Manual

For Ethernet modules only you can select 'Comms Port Emulation for Ethernet'. This option uses the FMT
firmware to handle Modbus/TCP messages and is the preferred solution for most ethernet applications.

In the example below, the fieldbus module is set up to use the firmware to process modbus/TCP commands
as Slave Address 1

18 . Flex32 programming package Colter Group Training Manual

RAM: Define the amount of allocated RAM

The FMT contains battery backed memory which is used to store your program. If you wish you can use some
of this RAM to hold data instead of program code, but obviously the maximum size of your program will be
smaller. This ‘allocated RAM' is accessed by the functions 'ram_erase’, '

ram_read', and ‘'ram_write".

Sufficient RAM (in the form of 16-bit words) must be allocated for your applications storage using the RAM
page on the Project Configuration screen.

Notes:
Allocated RAM is battery backed and will not be cleared unless you call 'ram_erase()".

For large blocks of allocated RAM the erase time can be significant - approximately 150mS for 100,000 16-bit
words.

Flash Card: Define the use for the FMT-200/FMT-400 plug in flash card.

Some members of the FMT family have a socket to accept a plug in Flash Card. This card can be used to
store either a program or data.

There are three modes, these are:
Programme storage.
Programme storage with auto-update.
User Data store.

To set the mode select the 'Flash Card' page from the project configuration screen.

Programme storage: In this mode your program that is present in the FMT's internal flash memory is
downloaded to the Flash Card. When the Flash Card is inserted into the FMT's Flash Card socket and the
FMT is then powered up, then the programme that is present in the Flash Card will automatically run on the
FMT but it will not be transferred to the internal flash. If the FMT is powered up next time with the Flash Card
no longer present then the program that was in the Flash Card will no longer be present in the FMT.

Programme storage with auto-update: In this mode your program that is present in the FMT's internal flash
memory is downloaded to the Flash Card. When the flash card is inserted into the FMT's Flash Card socket
and the FMT is then powered up, then the program that is present in the Flash Card will automatically run on
the FMT, it will also be copied into the FMT's internal flash so that the program that was present on the Flash
Card will now be present in the FMT when it is hext powered up even if the Flash Card is no longer present.

User Data store: In this mode the Flash Card is used for data storage (eg. data logging). However the Flash
Card can still be used for programme storage in this mode, in order to use it the programme should be
downloaded to the Flash Card as normal. In order to use the program when the Flash Card is inserted into
the FMT's Flash Card socket, keys F1 and F2 should be held down while the FMT is next powered up. The
FMT will then display the message 'Run card program' (press F4 to run the program), the FMT will then
display the message 'Update int flash' (press F3 to do this). Only select '‘Update int flash' if you want to copy
the programme that is in the Flash Card into the internal flash. If however you only want to run the
programme then press F1, F2 or F4 when 'Update int flash' is displayed.

Note: To use the flash_erase, flash_read and flash_write functions you must set the card mode to 'User Data
store'.

19 - Flex32 programming package Colter Group Training Manual

Symbol Name editor

Any facility can be given a symbol name.

Symbol names can be very useful when writing a program. You can assign symbol names to any facility in
the FMT. To assign symbol names to facilities you should use the Symbol Name Editor.

Open the editor (if it is not already open), you will see various pages that you can select from each with
different facilities on them eg. Inputs, Outputs, Registers. When you are on the page that you require you can
assign a symbol name to the facility that you want to name. You should write this name in the short name
column of the relevant facility if the symbol name is being used in ladder code (up to a maximum of 6
characters) or if the symbol name is being used in instruction language you should write the name in the long
name column of the relevant facility (up to a maximum of 12 characters). Note that short symbol names can
be used in the instruction language but long symbol names can not be used in ladder code. Long names and
comments are optional.

When you have assigned a symbol name to a facility then type this instead of the facility. For instance if you
assign the name 'pump' to output Q0. Then instead of typing TURN_ON (QO0) you would type TURN_ON

(pump).

The Symbol name editor:

1 Symbol Hame Editor

2 & <¢ M b

Save Prnt Clear Find Multi© Close
Inputs Dutputs !.ﬁ.nalugu_e Ir I Analogue Elul:l Hegiste’rsl Wide Hegs..l Flags | Timersl Text I *I

E =
Irmpart Expart

Facility l Short I Liong I Commett I
Q0000 | Pumpl Pump One

(10007 FPumpz Pump Two

Q0002 | Stop Stop Buttor

Q0003 |Emstop Emergency Stop

10004

10005

Q000e

(0007

There are various buttons along the toolbar of the Symbol Name Editor from left to right these are:
'Save'. Saves the symbol names.

'Print'. Prints the symbol names

'‘Clear'. Clears the entry that you are working on.

'Find'. This will prompt you to enter a symbol name to find from all the symbol names that have been
entered.

20 - Flex32 programming package Colter Group Training Manual

'Import'. This button will enable you to load previously saved symbol name files, the file extensions are *.def,
for the default symbol name file which comes with Flex32 and is in the Flex32 root directory and *.txt for a
exported symbol name file of your own creation.

'Export’. This button enables you to export you symbol names currently in use to a text file, you can chose
which directory to export the files to. This feature is useful if you wish to use your symbol names from your
current project in another project.

When you have entered the file name you wish to use then you will be presented with the box below:

= Export Symbol Names | _ [O0] =]

Current Facilityﬁ_;:-lnput

: . v Export Al lnput Symbal Manmes
Tick this box to save all symbaol nameV
the current facility. o W s i——a'

Leave the box unticked to specify individual
symbol names fram the current facility.

Export the symbol names far Inpuk Do 7

Click either "es'to save symbol namea_ﬂi____a @ Mo |

current facility shown.
symbol names for the current facility. w Tes Al @ Mo Al X Cancel

Click ™Mao'if you do not want to save the

You will see that there are several choices, you can either chose to save the individual facility symbol names if
you click 'Yes' you will then move on to the next facility (Input, Output etc.). If you click 'No' then the symbol
names for the current facility shown will not be saved. You can also chose which symbol names that are
saved by un ticking the 'Export All xxxx Symbol Names' box (where xxxx represents the current facility). You
can then specify which names are saved eg. Inputs from 0 to 7.

Clicking 'Yes All' will save all symbol names of all facilities. Clicking 'No All' will not save any symbol names.
Clicking 'Cancel’ will cancel the export

'Load'. When clicked will prompt you for a text file containing symbol names.

'Multi'. Toggles between all facility pages and one row of pages which have to be scrolled along in order to
access the other pages.

'Close’. Clicking on this button will close the Symbol Name Editor.

Text String Editor

Text Strings are pre-entered in the text string editor and sent out using the Text function.

Text strings are used to store pre-defined messages for sending out the serial ports with the text command.
The text strings are entered using the text string editor and downloaded as part of the program.

Text strings can include control characters for including registers, timers, counters and also data and time in
your text strings.

To enter a text string you must use the Text String Editor. This is a window in the Flex32 package. You will
see that it resembles a table with the text string numbers down the lefthand side. The text strings can be
assigned a long and short name in the symbol name editor and these will be shown alongside the text string if

21 - Flex32 programming package Colter Group Training Manual

it has been assigned with a name. You can enter your text string in the column marked 'Text....".
formatting of the text string please see 'Text String Format'.

For correct

There are various buttons along the toolbar of the Text String Editor from left to right these are:
'Save'. Saves the text strings.

'‘Control'. Click on this button to select from various ASCII control characters to put in your text string. The
character you select will be put into you text string immediately after the current cursor position.

'ASCII'. Click on this button to place an ASCII character in your text string. The two question marks that
appear after the '#' should be replaced with the hex value of the ASCII character that you require. Please see
the ASCII Table if you need to know the value for you chosen character.

'Value'. Click on this button to place the value of a 16-bit register, or the value of a 32-bit register, or the
value of a timer, or the value of a counter. You will be prompted to select the formatting for the value that is to
be printed. When you have selected what value and formatting you want then you will see four question
marks appear after the text string code. You need to replace these question marks with the register, timer or
counter that you want.

‘Buffer'. Click on this button to print a string of characters using the data in the registers starting at R????. If
using fixed length buffer denoted by '%SR????:??" the length of the string will be :?? characters. If using
terminated buffer, denoted by '%SR????#7??", the string will continue until a terminating character is met or
until 250 characters have been sent. The terminating character is the character whose ASCII value is #?7?
hex.

'Insert'. Click on this button to link another text string into the present one. This will allow you to cascade
several text strings together. Type the number of the text string that you wish to cascade in place of the
guestion marks which appear.

'‘DateTime'. Clicking on this button will allow you to insert the command for date/time into your text string.
You will need to chose from the various formatting options that you have the choice of.

'Check'. Clicking on this button enables you to place a checksum calculation on you text string. Click on
'Start Calculation’ to start the checksum calculation from the current cursor position. Click on end checksum
to end the checksum calculation on the data. The calculation will be performed on the data between the start
and end checksum calculation commands. You should then place a print checksum command which will print
the checksum in the format that you chose from the various formats that you are presented with.

'‘Display’. When clicking on this button you will be presented with formatting options for your text string which
will be useful if you are printing you text string to the FMT-200's or FMT-400's built in display.

'Close’. Clicking on this button will enable you to close the Text String Editor.

Ladder module editor

The Ladder Editor is used to write project instruction modules in FLEX 32 utilizing the Ladder logic language.
Using the Ladder Module editor:
Starting a new Project and Module:

1. If you need to start a new project then do so by selecting 'New Project' from the File menu. Follow the on
screen instructions that you are presented with.

2. From the project configuration screen left click on the ‘'New' button which is situated between 'Available
Ladder Modules' and 'Project Ladder Modules'.

22 - Flex32 programming package Colter Group Training Manual

3. After entering a suitable name for your module you will enter the module editor:
Entering Ladder code into your Ladder module:

One you are in the Ladder module editor you can enter facilities in your Ladder logic program. To enter
ladder code you should position your cursor on the ladder rung where you wish to enter you code. Now click
on the facility that you wish to add, facilities are all presented as buttons at the bottom of the Ladder editor.
When you click on a facility, you will be required to complete some details about the facility that you are
placing in the ladder code for example if the facility was an output you will be required to complete some detail
about which output you are going to use. After you have filled in the required details then the facility will be
placed where your cursor is positioned.

g_ <untitled> I [=]
= A - B 2 & T
Save Savets| Print Cut Copw Paste Delete Change | Compile | On-Lingl Of-Line| Cloze
n = —
1 = —
2 = —
3 - —
P . —
5 - —]
Marmally Open Contacts Rising Edge Contacts
[IMPUTS) (INFPUTS) Links
Maormally Closed Contacts Falling Edge Contacts
(INPUTS) (INPUTS) Cormrment
| | | [
AFYE AR YE] | A Y A YR A Y - Y Y A Y —] = e
| 2 3 4 Shil EhF2 Shi3 Eh'4 Alkl A2 AlRE Aled Cerll Crl2 CrelZ Cerld 5 3 T G "
| O W L& ey E |6 123 ff] = ~ iR~ fw e G
CedS Crrl9 Creld AlkG Ale? ShleI .“\.Itﬁ Al .“\.!tlil ShfS :th Zhi? Shf& Shf? il Ctrl? Ctrl'r‘ : D. .“\ItS CirlS
Mext atate—l—"’ VAN, / .'I f KI | '\\] | L
.Jump Mcwe /Stack Caurter Cams 32-hit Set date\ Turn OR
operations | &time
Label FLFO Timer Cormparator Output Turn Off
1E-hit Flnmingpuint
M aster Contact Shift Register Set/FesetLaich operations operations Irerted Output
M aster Contact Reset
The Tool Bar:

Starting with the lefthand side of tool bar in the instruction editor the buttons will be described in some more

detail:

'Save'. When clicked on with the lefthand button of your mouse this button will save you module at the stage
that it is at when you click the button. You must first give you module a name before you use the save
command. This is done using the...

....Save As' button. When this is clicked on you will be prompted to enter a name for you module.

23 - Flex32 programming package Colter Group Training Manual

'Print'. This button will be enabled when you have just edited something in your module for example if you
have just deleted a part of your module but now realize you shouldn't have then click on this and what you
have just deleted will be reinstated.

'Cut'. To use this button you must first highlight some Ladder code to cut, do this as you would in a word
processor, now click on the 'Cut' button. The highlighted Ladder code will be cut to the clipboard.

'Copy'. To use this button you must first highlight some Ladder code to copy, do this as you would in a word
processor, now click on the 'Copy' button. The highlighted Ladder code will be copied to the clipboard.

'Paste’. To use this button there must be some Lader code in the clipboard. Position the cursor where you
want the pasted Ladder code to start and click on the 'Paste’ button. The Ladder code in the clipboard will be
pasted into the current cursor position.

‘Change’. To use this button you must first have a facility currently highlighted in your ladder code. When
this button is clicked you will be able to change the parameters of the facility currently highlighted.

'‘Compile'. When this button is clicked on your Ladder code that you have entered into the Ladder editor will
be compiled into a form of code that is common to both ladder and instruction modules (this code is unseen
by the user but is used in the download process to the FMT). The Instruction module is also checked to make
sure that it is acceptable to the FMT and that the source code does not have any errors present.

'On-Line'. When this button is clicked on and you are connected to the FMT which has your project
downloaded to it then the current state of the ladder elements will be shown with elements that are 'on’ being
highlighted in yellow.

'Off-Line'. If you are 'On-Line' then you will be taken 'Off-Line' when this button is clicked on. You must be
'Off-Line" in order to make changes to your instruction module.

The Main Menu:

'Edit' drop-down menu. From this menu you can select from 'Undo’, 'Redo’ (this has the opposite effect of
undo, if you have just undone something that you wish you had not, then click on Redo), 'Cut’, ‘Copy', 'Paste'
and 'Delete’ these work in the same way as described in the Tool Bar of the Ladder Editor. You can also
select whether 'Show Symbol Names' is selected. If it is then names assigned to facilities will be shown. If is
is not then the actual facility will be displayed.

'‘Search' drop-down menu. This does not function in the Ladder editor.

'‘Bookmark' drop-down menu. This does not function in the Ladder editor.

More Useful Features....

When editing your module if you click the right-hand mouse button while you have a facility highlighted you
will be presented with a list of five options:

‘Change' To use this button you must first have a facility currently highlighted in your ladder code. When this
button is clicked you will be able to change the parameters of the facility currently highlighted.

'Normally Open' This only works when an input (contact) is highlighted if you click 'normally open' then the
input currently highlighted will be changed to a normally open contact.

'Normally Closed' This only works when an input (contact) is highlighted if you click 'normally closed' then
the input currently highlighted will be changed to a normally closed contact.

'Edge Up' This only works when an input (contact) is highlighted if you click 'Edge Up' then the input currently
highlighted will be changed to a rising edge triggered contact.

'Edge Down' This only works when an input (contact) is highlighted if you click 'Edge Down' then the input
currently highlighted will be changed to a falling edge triggered contact.

24 . Flex32 programming package Colter Group Training Manual

Instruction module editor

The Instruction Editor is used to write project instruction modules in FLEX 32 utilizing the text based
instruction language.

The editor works in much the same way as a basic word processor terms of entering text, functions such as
Cut & Paste and Find & Replace etc. are available.

Using the Instruction Module editor:
Starting a new Project and Module:

1. If you need to start a new project then do so by selecting ‘New Project' from the File menu. Follow the on
screen instructions that you are presented with.

2. From the project configuration screen left click on the ‘'New' button which is situated between 'Available
Instruction Modules' and 'Project Instruction Modules'.

3. After entering a suitable name for your module you will enter the module editor
Entering code into your instruction module:

One you are in the Instruction Module editor you can enter in your program text in much the same way as you
would on a word processor. When you are entering functions and facilities etc into the editor you will see that
they are highlighted in different colours for example outputs e.g. Q1 are displayed in red and text string
numbers e.g. TX12 are highlighted in grey this will enable you to follow your code more easily.

If you type in something incorrectly the word you have just typed in will appear underlined. This enables
mistakes to be easily seen.

There are various useful editing functions available in the instruction editor, these are available as buttons that
can be clicked on the tool bar of the instruction module editor screen. Some useful editing functions are also
available from the main menu these being under the menus 'Edit', 'Search' and 'Bookmark'.

The Tool Bar:

Starting with the lefthand side of tool bar in the instruction editor the buttons will be described in some more
detail:

'Save'. When clicked on with the lefthand button of your mouse this button will save you module at the stage
that it is at when you click the button. You must first give you module a name before you use the save
command. This is done using the...

....Save As' button. When this is clicked on you will be prompted to enter a name for you module.
'Undo’. This button will be enabled when you have just edited something in your module for example if you
have just deleted a part of your module but now realize you shouldn't have then click on this and what you

have just deleted will be reinstated.

'Redo’. This has the opposite effect of undo. If you have just undone something that you wish you had not,
then click on Redo.

'Cut'. To use this button you must first highlight some text to cut, do this as you would in a normal word
processor, now click on the 'Cut' button. The highlighted text will be cut to the clipboard.

'Copy'. To use this button you must first highlight some text to copy, do this as you would in a normal word
processor, now click on the 'Copy' button. The highlighted text will be copied to the clipboard.

25 . Flex32 programming package Colter Group Training Manual

'Paste’. To use this button there must be some text in the clipboard. Position the cursor where you want the
pasted text to start and click on the 'Paste’ button. The text in the clipboard will be pasted into the current
cursor position.

'‘Delete’. Clicking on this button will delete any text that is currently highlighted.
‘Indent’. To use this button first highlight a line of text to indent then click on the 'Indent’ button.

'Unind.". This button performs the opposite of the 'Indent’ button ie. it remove the indents from any text that
you highlight.

'Font'. This when clicked on will enable you to change select different fonts and to enable you to change the
properties of the font that you are using.

‘Compile'. When this button is clicked on your source code that you have entered into the Instruction Editor
will be compiled into a form of code that is common to both ladder and instruction modules (this code is
unseen by the user but is used in the download process to the FMT). The Instruction module is also checked
to make sure that it is acceptable to the FMT and that the source code does not have any errors present.

'‘Control'. When this button is clicked on you will be presented with four ways in which your instruction
module code can be executed, for more information please see Module Control.

'On-Line'. When this button is clicked on and you are connected to the FMT which has your project
downloaded to it then you will be able to see the FMT stepping through your code, monitor registers etc.

'Off-Line'. If you are 'On-Line' then you will be taken 'Off-Line' when this button is clicked on. You must be
'Off-Line" in order to make changes to your instruction module.

The Main Menu:

'Edit' drop-down menu. From this menu you can select from 'Undo’, 'Redo’, 'Cut’, 'Copy’, 'Paste’ and 'Delete’
these work in the same way as described in the Tool Bar of the Instruction Editor.

'‘Search’ drop-down menu. From this menu you can select from 'Find', 'Replace’ and 'Search Again'.

'Find'. Prompts you to enter a string of characters to be searched for, then searches the current module for
matching text.

'Replace’. Prompts you to enter a string of characters to be searched for, then a second set with which to
replace the original.

'Search Again'. Repeats the last search operation with the same search data,case sensitivity and direction.
The search starts from the current cursor position.

You can set the following options to optimize the search and replace operation for your exact needs.

Direction:
The direction can be set to search either up (towards the beginning of the module) or down (towards the end
of the module). You should select which direction you want.

Match whole word only:

If this option is selected then only the whole word will be matched. If this is not selected then the search string
could be entered as just part of a word eg. par would match with part and particular if match whole word is
not selected.

Match case:
The search can be set up to be case sensitive or not. If you select case sensitive, 'Colter’ will not match with
‘colter' or 'COLTER'. If you do not select this option then 'Colter' will match 'colter' and 'COLTER".

Replace All:

26 - Flex32 programming package Colter Group Training Manual

You can have the search and replace operation find and replace all matching texts through the module if you
select this.

Find Next:
Clicking on this will search for the next matching text after the one that has just been found.

'‘Bookmark' drop-down menu. From this menu you can set bookmarks in your instruction module so that you
can jump to and from them.

You can set a bookmark in you module by clicking on the line of text that you wish to bookmark, then select
'Set' from the Bookmark drop-down menu, select the bookmark number that you want and the bookmark will
be placed for you next to your selected line of text.

To jump to a bookmark select 'Goto' from the Bookmark drop-down menu then select the bookmark number
that you wish to go to. The cursor will be placed on the book marked line.

More Useful Features:

When editing you module if you click the right-hand mouse button while pointing over you code you will be
presented with a list of three options:

'Symbol Names..." Clicking on this will present you with a list of symbol names used in you project and what
facility the symbol name has been assigned to. Clicking in the symbol names column and typing a name will
show you which facility is associated with the name you have just entered (or nearest name if the one that you
typed does not exist). Clicking in the functions column and typing a function will show you what name is
associated with the function that you have just typed (or nearest function if the one that you just typed does
not exist).

Double clicking on a symbol name in the list will place this name in your module after the current cursor
position.

'Functions..." Clicking on this will present you with a list of function that can be used in you instruction
module. You can scroll up and down the list and double clicking on a function will place it in your module after
the current cursor position, leaving you to fill in the appropriate detail eg. registers, constants.

'Keywords' Clicking on this will present you with a list of keywords, for example, else, if, until. Double
clicking on a keyword will place it in your instruction module after the current cursor position.

If the 'Usage' button on the main toolbar is clicked then all the facilities that are used in your project will be
shown in a list. The facilities are listed along with their short and long symbol names. The multiple number of
the facility being used is also shown along with the module name that the facility is used in, the function that
controls the facility is shown and also whether the facility is being read or written to by the function.

PID configuration

Click the 'P.I.D." button on the main toolbar to be shown all the available facilities for configuring PID.

indow Help
- C

B = T 2 | B E
Ower Mo

Froject Spmbol Test Lisas

The maximum number of PID loops that can be supported by FMT/BIS hardware is as follows:

FMT-100......cccveiiiiiieie e, 1
FMT-200......cccveiiiiiieieen, 16

27 - Flex32 programming package Colter Group Training Manual

BIS-100.....cccoviiiiiiiie s 16

FMT-400 CPU-A.........cceen. 8
FMT-400 CPU-B................... 16
FMT-400 CPU-C............eeveees 64

Basic:

» PID Control =1 K|

Configuration 1 k4 anitar I

 Basic] Sdvarced !

....................

i |rput Facility
Al]

T he tacility which reprezents
the curment process walle,

i~ Setpont [0-100000]

The target to which the PITr
loop controlz the process,

1 Constant 1 '#i

o1 Facility il |

[~ Proportional Band (0-TO0%}
" Constant [0.00 ==

& Facility B1000]

Fercentage of the range over

which propotional gain applies:

[Integral Time [Seconds)
i* Constant |5 ::i

£ Faility [
Tirne-oser which the ntegral
termn acts [Rezet time].

i Drerivative Time [Seconds]——

T+ Cohstant |D.'IEI '#i

" Faciliby [

Time ower which the differentialé

ke acts.

[Outpit Facility

A2 I

The facility which the PID
drives to contral the process.

i~ Digital Outplt Facility
Q15

Fulze width modulated digital
equivalent of the PID output,

|~ Dig. Dut Cycle Time [Seconds]
i+ Cohstant |1 '#i
£ Faciliby [T

Time oveer which the digital
output P operates,

PID Loop Humber II:I '¢] Total PID Loop=s i'l ‘;1

First select the total PID loops to be configured, and also the loop number. Each loop will require to be
configured separately. When all of the parameters have been completed then click the ‘Apply’ button.

'Input Facility': Click on this button to input the current process value, which can be an analogue input (Al),
analogue output (AQ) or register (R). The process value has a range of 0-10000, is volatile and user program
adjustable.

'Setpoint’: Selecting ‘Constant’ allows a fixed value to be entered via the up/down arrows within the range
0-10000. If ‘Facility’ is used then click on the button to input either an analogue input (Al), analogue output
(AQ) or a register (R), again choosing within the range 0-10000. The process setpoint is non-volatile,
preserved through power down, and user program and online adjustable.

'Proportional Band': This can be either a constant or facility in the same manner as ‘Setpoint’. The range is
0.00-100.00%, non-volatile, preserved through power down, and user program and online adjustable. A value
of zero will disable the PID.

'Integral Time': This can be either a constant or facility in the same manner as ‘Setpoint’. The range is
0-3000 seconds, non-volatile, preserved through power down, and user program and online adjustable. A
value of zero will disable this function.

28 - Flex32 programming package Colter Group Training Manual

'‘Derivative Time': This can be either a constant or facility in the same manner as ‘Setpoint’. The range is
0.00-65.00 seconds, non-volatile, preserved through power down, and user program and online adjustable. A
value of zero will disable this function.

'Output Facility': Click on this button to select the output which the PID drives to control the process. This
can be either an analogue output (AQ) or register (R), and has a range of 0-10000, is volatile, and user
program and on-line adjustable.

'‘Digital Output Facility': Click on this button to select the digital output for PMW output. This can be a digital
output (Q) or a flag (F) and is volatile and has no other facilities.

‘Digital Output Cycle Time': This can be either a constant or facility in the same manner as ‘Setpoint’. The
range is 1-600 seconds, non-volatile, preserved through power down, and user program and online
adjustable. A value of zero will disable output operation.

Advanced:

' PID Control M=l
I

Configuration i bd amitor i

Baszicc Advanced I

i LControl i AutodManual————1 - Integral Hold- 5
+ On e futa + On
" 0 " tManual 0
" Facility [! " Faciliby I I " Facility [!
PID operates when DR, Dutput| | Auto iz nomal operation, In Suspends the inclusion of new |
| facdlity i zera when OFF. || manual the cutputis not driven.i | data inta the integral berm, |

r~Deadband [0-100%]} “tin Dutput Power [0-100%F 7 7 Inwerze Output Facility
(+ Congtant ;I:I.I:IE 'ti " Cohstant !!1'."2‘ ¢i

A03
" Facility i (% Facility ~ R1o01
Output ig unchanged iF inpuk iz FinimLim walue of the oltput The inverse of the value of the .
; within deadband of setpoint. facility, || cutput facility,

i~ Integral Lirmit (0-100%F “tax Output Power [0-100%]— 1 Midpower Point [0-1002) ——

| " Constant " Cohstant]rl an ti

|G Fady pp | |6 Fadly mlo | || Facy Rl |
Setz the maximum value b amirnuim walue of the output The walue of the output Facility
[zaturation] for the integral term. | | Facility, || wheninput equals setpoint.

‘ PID Loop Humher!f- -‘;1 Total PID Loops !‘. *;1 Apply Cancel | |

'‘Control': This can either be fixed or a facility. Click on the button to choose the facility, which can either be a
digital input (1), digital output (Q) or a flag (F). PID process is enabled when this selection is ‘ON’, and disabled
when ‘OFF’.

'Auto/Manual’: This can either be fixed or a facility. Click on the button to choose the facility, which can either
be a digital input (1), digital output (Q) or a flag (F). PID process is enabled when this selection is ‘AUTO’, and
when ‘Manual’ disabled, but will keep tracking.

'Integral Hold": This can either be fixed or a facility. Click on the button to choose the facility, which can
either be a digital input (1), digital output (Q) or a flag (F). When this selection is ‘OFF’ it suspends the
inclusion of new data into the integral term.

29 . Flex32 programming package Colter Group Training Manual

'Deadband': Selecting ‘Constant’ allows a fixed value to be entered via the up/down arrows within the range
0.00-100.00%. If ‘Facility’ is used then click on the button to input either an analogue input (Al), analogue
output (AQ) or a register (R), again choosing within the range 0.00-100.00%. The process setpoint is non-
volatile, preserved through power down, and user program and online adjustable.

'Integral (Saturation) Limit': This can be either a constant or facility in the same manner as ‘Deadband’. The
range is 0.00-100.00%, non-volatile, preserved through power down, and user program and online adjustable.
A value of 100% has no effect.

'Min Output Power': This can be either a constant or facility in the same manner as ‘Deadband’. The range
is 0-10000, non-volatile and preserved through power down. A value of zero has no effect.

'Min Output Power': This can be either a constant or facility in the same manner as ‘Deadband’. The range
is 0-10000, non-volatile and preserved through power down. A value of 10000 has no effect.

'Inverse Output Facility': Click on this button to select the inverse output to which the PID drives to control
the process. This can be either an analogue output (AQ) or register (R), and has a range of 0-10000, is
volatile, and user program and on-line adjustable.

'Midpower Point": This can be either a constant or facility in the same manner as ‘Deadband’. The range is
0.00-100.00%.

Monitor/Basic:

Click ‘On-Line’ to monitor PID control using the time scale selected from the right hand column.

= PID Control M=l E3
Configurations Monitar |
10000 @ |
i OnLine
2000 i""'""'“'
L { Off-Line
60D 1z
5000 " Bzec
4000 = Jlzec
" Tmin

e i Bmin
=000 " 10min
1000 " Thatir

i | £ Bhor
Bssic | Advanced |

~Praportional Band [0-100%] - Dutput Facility
—Input Facilty——————— 0 - _Il:_l |
1] ‘ ~Integral Time [Seconds] ~ Digital Output Facility—————

-

—Derivative Time (Seconds)— :Dig. Out Cyzle Time [Secn:unn:ls]|

E R (R [[1 f=
PID Loop Numheriﬁ -:’ Total PID Loops I'I -‘L;’ Apply ! Cancel |

o

i~ Setpoint [0-1 D,DDD]*}

30 - Flex32 programming package Colter Group Training Manual

Selecting ‘Basic’ shows the values of the parameters setup in the basic configuration page. If constants have
been selected, then their values can be altered by means of the up/down arrows. The resultant change can
then be observed on the monitor screen.

Facilities can be altered by using the ‘Monitor’ box from the icon on the main tool bar.

Monitor/Advanced:

Click ‘On-Line’ to monitor PID control using the time scale selected from the right hand column.

= PID Control HE=E
Configurations Monitar |
10000
@
- OrvLine
2000 J:h
L ‘ Cft-Line
o 7 1zec
- 1 Bzec
4000 ! 10zec
= Tmin
3000
0 By
o ™ 10min
1000 = Thotr
- | Bholr
Laontral CAutodManual | Integral Hold

|fo iManuaI il:lff

~Deadband 0-100%) | Min Output Power [0-100%] | Inverse Dutput Faciliby
] il:l il:l

“Integral Limit [0100%) | Max Dutput Power [0-100%) | Midpower Painit {0-100%]
l—P—D :

||:| 0
PID Loop Mumber iu'u -:’ Total PID Loops I'I -"L;i Apply I Cancel

Selecting ‘Advanced’ shows the values of the parameters setup in the advanced configuration page. If
constants have been selected, then their values can be altered by means of the up/down arrows. The
resultant change can then be observed on the monitor screen.

Facilities can be altered by using the ‘Monitor’ box from the icon on the main tool bar.

31 - Flex32 programming package Colter Group Training Manual

Project compile and download; the ‘Run’ button.

To download your project to your FMT / BIS click on the Run button on the Flex32 toolbar:

File Yiew Compie Diagrostics [

= & b &

Eru:uiect Module F’run.-..'_ Frint...

When the Run button is clicked all the modules currently selected in your project will be compiled and
downloaded to you FMT / BIS.

If you click on the small down arrow by the side of the Run button you will be presented with a list of options:

2 Flex32-

File Wiew Compilz Diagnostics Of
= = bl & [
Project Module Bun..| Print.
‘W Compile
v Downhoad
v SetRTC
¥ Run

The options presented are: Compile, Download, Set RTC and Run:

'‘Compile'": If this option is unticked then the previously compiled *.dld file will be downloaded to the FMT /
BIS. This is useful if for example you wish to provide a customer with a set of down loadable, compiled files
(see note below) but do not wish to provide them with the source code (instruction language and ladder
modules).

‘Download': If this option is un-ticked then the project will not be downloaded to the FMT / BIS when the Run
button is clicked.

'Set RTC': If this option is un-ticked then the FMT / BIS's clock will not be set to your PC's clock.

'Run’ If this option is un-ticked then the project will not run when it is downloaded to the FMT / BIS. It can be
made to Run later however, by clicking on the Run button in the monitor window or by downloading your
project again with the 'Run’ option ticked.

Note:
The files needed for a compiled project download without the source code are the files found in your project
directory with the following file extensions:

XXXXX.prj - the main project file

XXXXX.sym - the symbol name file

xxxxx.idx - the symbol name index file

xxxxx.tsf - the text string file

xxxxx.alt - the 'Alert' code file

xxxxx.dld - the main download file

*.mch - the module control block for each instruction module

(where xxxxx is your project name).

32 - Flex32 programming package Colter Group Training Manual

Facility Usage

If the 'Usage' button on the main toolbar is clicked then all the facilities that are used in your project will be
shown in a list. The facilities are listed along with their short and long symbol names. The multiple number of
the facility being used is also shown along with the module name that the facility is used in, the function that
controls the facility is shown and also whether the facility is being read or written to by the function.

Facility Usage is only available once a ‘Compile’ or ‘Test Compile’ has been performed.

ﬂ_‘ Facility Uzage
oo & O
Find Frint Exit

Qo000 24 SCADA LOOP towve hirite
F1000 basic_w_open 1 GEMERAL WALWE COMTE If Fead
F1000 basic_w_open 32 SCADA LOOP towe Wrike
F10o00 basic_v_open 1 GEMERAL %ALWE COMTFEElze If Fead
F1001 basic_w_shut 1 GEMERAL WALWE COMTF H Fead
F1001 basic_v_shut 1 GEMERAL %aLWE COMTFElse If Read
F10o0z2 basic_w_auto 1 GEMERAL WALWE COMTF If Fead
F10o02 basic_w_auto 1 GEMERAL WALWE COMTE Elze If Read
F1onz basic_+_auto 1 GEMERAL WALWE COMTF Elze If Read
F1o0z basic_w_auto 1 GEMERAL YALWE COMTEIf Fead
F100z2 basic_w_auto 1 GEMERAL %ALWE COMTEElze If Read
F1o0z2 basic_w_auto 1 GEMERAL %ALWE COMTFEElze If Fead
F1o0z2 bazic_v_auto 1 SCADA LOOP It Fiead
F1002 bazic_v_auto 1 SCADa LOOP Elze If Read
F1o0z2 basic_w_auto 1 GEMERAL WALWE COMTE If Fead
F1004 basic_w_ok 1 GEMERAL WALWE COMTFE Elze If Fead
F1o04 basic «_ ok 1 GEMERAL YWALWE COMTE If Read
F1004 basic_w_ok 1 GEMERAL YWALWE COMTE If Fead
F1004 basic_w_ok 1 GEMERAL %ALWE COMTE Elze If Read
F1004 basic_w_ok 1 GEMERAL %ALWE COMTFEElze If Read
F1004 basic_w_ok 1 GEMERAL YALWE COMTFElze If Fead
F1004 basic w ok 1 GEMERAL WALWE COMTEIf Read L‘

Debugging screens

Information
Alarms

The FMT CPU's generate alarms when they detect that something is wrong. These can be viewed from the
Alarm screen .

Alarms are categorized as Errors, Warnings or Information.

x Errors are serious and cause the program to stop; all outputs are turned off and the error LED illuminates.

x Warnings cause no effect on the operation of the user program but indicate something is wrong; The
warning LED illuminates.

x Information level alarms are provided to help you find possible errors in your application and do not cause
the error or warning LEDs to illuminate.

A list of these errors and warnings can be found under ‘Errors and Warnings’ in Flex32/Help/Contents.

Monitor

The Monitor window allows you to monitor all FMT facilities and to force inputs and outputs.

33 - Flex32 programming package Colter Group Training Manual

The monitor can be very useful because of it's ability to monitor the facilities in the FMT this can enable you to
see what is happening to, for example, data in a register.

To view and edit the monitor click on the 'Monitor' button on the main toolbar. The monitor window will then
appear:

righ_pushal
-_:Iisu:h___v_alve
(bar_walve
steer_right
‘steer_posn

When the monitor window appears you will be presented with three pages, Facilities, Forces and Allocated
RAM.

Facilities monitor page:

'Add’. Clicking on this button will enable you to add a facility to monitor, you will be presented with a box in
which to enter the data about the facility that you wish to monitor:

Add Momtor

34 . Flex32 programming package Colter Group Training Manual

Enter the facility that you wish to monitor in the 'Facility to monitor' box. The repeat number to be entered will
determined the amount of facilities to monitor eg. a repeat number of 5 entered when the facility to be
monitored is g0 would mean that g0 to g4 would be displayed in the facility monitor.

Clicking on the various options in the 'Display As..." section will enable you to display the data in your facility in
the ways listed. (Voltage and current displays are only really applicable to analogue inputs and outputs).

'‘Del'. Clicking on this button will remove the facility that has been highlighted from the those being monitored.
To highlight and remove multiple facilities hold down the left mouse button over the facility to highlight and
press the space bar to select, while still holding down the mouse button point to the next facility to select and
press down the space bar to select it. Keep selecting facilities in this manner until you do not want to select
any more, then release the mouse button and click on 'Del'.

'‘Del All'. Clicking on this button will clear all the facilities from the list.

'‘Save'. Clicking on this button will provide you with an opportunity to save your facility monitor name setup.
You will be prompted to enter a name for the setup to be saved as. The setup will be saved as 'xxxx.msu' (the
X's being whatever you type in for the file name) in your project directory.

‘Load'. Clicking on this button will enable you to load a monitor setup that has been previously saved. You
can either load a monitor setup from you current project directory, or you can load monitor setups from other
projects by going to their directory. If no monitor setups are listed in you project directory when you click
'‘Load' then non have been saved previously.

i Set/Force Fat:il.it_v

'Force'. Clicking on this button will provide you with the opportunity to set/force input or outputs on/off. When
a facility is set then it is still under program control. eg if an output is set on then the net time the program in
the FMT turns the output off then it will be able to do so. When a facility is forced then the program can not
control it any more eg. if an output is forced on then the program can not turn it off until the force is cleared.

'Frc All'. Clicking on this will enable all the inputs and outputs that have been selected (for multiple selection
see the 'Rem’ section of this help) to be set/forced on or off. All facilities that have been forced can also have
the forces cleared. Note: Be careful to ensure that nothing has been selected other than inputs and/or
outputs otherwise, for example, numbers may be forced into registers if these happened to be selected which
could lead to unpredictable results..

'Style'. Selecting this will enable the value in the facility currently highlighted to be displayed in decimal,
hexadecimal, voltage, current or text (text takes the value and displays the ASCII character which
corresponds with it).

'Close'. Clicking on this will close the monitor window.

'Start'. Starts user program execution if it has been stopped.

'Stop'. Stops user program execution if it is currently running.

35 - Flex32 programming package Colter Group Training Manual

'Alarm'. Selecting this will enable you to view any errors or warnings on the FMT.

'Forc'd I'. This button will be "illuminated' if there are any inputs currently forced on. Clicking on it will enable
the force to be removed.

'Forc'd Q'. This button will be ‘illuminated' if there are any outputs currently forced on. Clicking on it will
enable the force to be removed.

'‘Battery'. This button will illuminate if the battery in the FMT currently connected is running low.

'Info’. Clicking on this button will provide you with information about the FMT that is currently connected eg.
FMT type, firmware version etc.

Forces monitor page:

Any time a facility is forced or set to a new value it is recorded on the Forces page of the monitor form. This
list of forces can be re-executed or saved to disk for later use.

& Monitor

dizch_walve i Fl:ed On
| 00123
| TwO_BalLE

'Del'. Clicking on this button will remove the force that has been highlighted from the list. To highlight and
remove multiple forces hold down the left mouse button over the force to highlight and press the space bar to
select. Keep selecting facilities in this manner until you do not want to select any more, then release the
mouse button and click on 'Del'.

'Del All'. Clicking on this button will clear all the forces from the list.
'Save'. Clicking on this button will provide you with an opportunity to save your force list. You will be

prompted to enter a name for the setup to be saved as. The setup will be saved as 'xxxx.mff' (the x's being
whatever you type in for the file name) in your project directory.

36 - Flex32 programming package Colter Group Training Manual

‘Load'. Clicking on this button will enable you to load a force list that has been previously saved. You can
either load a setup from you current project directory, or you can load monitor setups from other projects by
going to their directory.

'Reforce’. Re-sends all the force commands current shown on the force list.

'Force'. Clicking on this button will provide you with the opportunity to set/force input or outputs on/off. This
functions in exactly the same way as the Force button on the Facilities page.

'Close'. Clicking on this will close the monitor window.
Allocated RAM monitor page:

Clicking on this page will enable you to view the contents of any Allocated RAM you may have in the FMT.

1.
2
3
4
3
7

e 5
|_r.* [ey

B e ST Pt e e A E T

The 'Start Location' box allows you to enter the location that you wish to start reading the value of 16-bit words
in allocated RAM. The 'Read Count' box enables you to specify how many 16-bit words you wish to view. For
instance if there were sixty 16-bit words in allocated RAM and you wished to view the first twenty five then you
would set the Start Location to 0 and the Read Count to 30, this would show you the contents of the 16-bit
words 0 to 29.

Clicking on the disk icon will save all the allocated RAM to a text file on disk in a suitable format for importing
into a spreadsheet or database

37 - Flex32 programming package Colter Group Training Manual

Mimic

Q- Mimic Scieen

0122456 70 9101112431415 1617181920 2122 2324 2526 2728 2930 3
OSO0DODSESSO0OENES00E SEDOODEDODOoOOoEEOEmE

L

A A AR AI3 AM AE AIE AT funisses
FMT-200J compsct STATUS

STATUS
Eror Runr

Forcedd

Farged|
|
EatLoi

Q- Mimic Scieen

0122456 75310 1112131415 1617151320 2122 23 2425 28 2728 2330 3
OEOODONONNOOOENESO00E SOoNOODDOOoEoOoEEOoEm

AN A ABAIR AW A PE PTT Rumsms +m =

[There are no errorg or warmings o display)

o DK I

38 - Flex32 programming package

Colter Group Training Manual

SYSTEM
STATUS
. Aunrin

vang Syt
il e
Facedl o

Batlow. FrogEnst

o a
VACTIVE

Oscilloscope

5 AE ARk Run/Stop LED

SUPFLY

The Oscilloscope may be selected by clicking on the 'Scope' button on the Flex32 toolbar.
The Oscilloscope is usefull for debugging and monitoring facilities' magnitude over a period of time.

i Dscilloscope

T Channel 1

Fasility:

(o] x]

o

Faciliy:
s

W Channel3 —
- Off

v | Chanel 4 =——

Offs
Facilty: Scale/Di
& | 1000
T Triager [Tigger O} - Sec/Div
Eilhernell o Chanel® Level (I o B
. ham o 'Z_','Z;’in FHFJ' | Cm2C0sC 1 C2 8 Coi0c 200 50
(% Chennel2 " Channel4 | —

Click on various part of the Oscilloscope window shown below to find out how it functions

39 -

Flex32 programming package

Colter Group Training Manual

Programming Lead

The programming lead (Order Code: FMT PROGRAMMING LEAD) is used to connect your PC to
any of the range of FMT controllers.

Note: For FMT-100's a Serial Port Adapter (Order Code: FMT-374) is required so that the
programming lead can be connected to the FMT 100.

To make your own programming lead follow the connection diagram below.

FC Comms Port FMT/EIS
Sowmy Z25-wEy Fort O
3 . P Pl)

A [,
. g L
Y YL

Shell 6

The correct cable to use is 4 core non-twisted screened cable specified suitable for RS232
communications.

Please Note: The maximum specified distance for RS232 communications is 15 metres.
Note:
For PC’s without an RS232 (COM) port, then a USB to RS232 converter will be required.

You will need to know the port number ‘Windows’ has configured your adapter to, which must be in
the range COM1-4.

Flex32 can only support COM1-4.

Help

Flex32 help file
www.coltergroup.co.uk

40 - Flex32 programming package Colter Group Training Manual

Ladder Functions

Inputs: on, off, edge, fast edge.
Outputs: on, off.
Timers: on-delay, off-delay, pulse.
Counters: count-up, count-down, pre-set, clear.
Comparators: greater, less-than, equal to.
16-Bit, 32-Bit, and Floating Point operations:
Add, Subtract, Multiply, Divide, Square, Square Root.
And, Or, Exclusive Or. Negate, Logical shift, Rotate.
Binary to BCD, BCD to Binary.
Sine, Cosine, Tangent, Arctan, Exp, Ln, Log, and Power (Floating point only)
Move:
inputs, outputs, and flags to/from registers.
analogue inputs and outputs to/from registers.
16-Bit or 32-Bit registers to/from 16-Bit or 32-Bit registers.

Data Handling with flags and registers:
Shift Register.
Stack.
FIFO.

Serial Communications:
Send out Text string.

Receive number, text, data.

Compare received text with stored text.

41 . Ladder Functions Colter Group Training Manual

Ladder Example

E NAFLEXI2ALADDER EXAMPLE LAD

2 & % B PR A P
Save Savedz| Print Cut Copy Paste Delete Change| Compile| OriLing Off-Line Close
0 |—0G4flazhes eveny zecond if 16 i OM, or every 4 seconds if |6 iz JFF. = j
0006 1zec (0004
1 | | | | Ty
11 11 tiot
[000s dzec
> —— —
3 —

4 =05z 0N if the seconds are less than 20,

5 Fac, & [Second f—
Fac. B k0020
B —
E0005
2 11 i
11 .
[HEHEAFYH “ Lo e T R e e e | T
I 1 2] 4 Zhi1 Shi2 Shf3 Ehf4 At A2 AlkS Alcd Gl Srel2 CrelF Crrld = 6 7 & L JI
‘ SR E o & 2 E | €3~ 123 fi] = [- IR~ Iw~ ‘ =2 el
Cerld Creld Creld - Alks ST Shed Aleds Aled Al ZhFS Ehre ERFT EhEE EhF3 . Cerle o Crrl? a 0 - ARE Crrls

.1.4

Enter the above example in a ladder module, download, and test in debug...

42 . Ladder Example

Colter Group Training Manual

Instruction Language

Keywords
Wait_For 13
If 15
* code only executed when I5 is on...
Else_If 17
* code only executed when I5 is off but I7 is on...
Else
* code only executed when I5 is off and 17 is off...
End_if
Repeat 3
* this code executed 3 times...
End_Repeat
While AIO < 750
* this code executed all the time the value of AlO is less than 750
End_While
Do
* this code executed continually until the value of R24 is greater then 40
Until R24 > 40
For R100 = 0 to 99
* this code executed 100 times with R100 equal to 0,1,2....99
Next
Alert ErrorSub when 16 = 0

Conditions, used with some keywords e.g.
If R3 = 100
While 14 OR (I3 and F4)

Functions e.g.
Turn_on(q0)
add(1,r1,r1)

Subroutines
Call MySub
Sub MySub
* Code here is the subroutine
End_Sub

43 - Instruction Language Colter Group Training Manual

Instruction Functions

Turn On/off - FIFO Serial In
Turn_On - Init_Fifo - Serial_In
Turn_Off - Fifo_In Close_Port
Fast on - Fifo_Out Compare_Text
Fast_off
Stack . RAM storage
Timers . Init_Stack Ram_Erase
On_Delay . Stack Push Ram_Read
Off _Delay . Stack _Pop Ram_Write

16-bit Operations 32-Bit Operations Flash Card Storage

Add - Add_| Flash_Erase
Subt - Subt _| Flash_Read
Mul - Mul_l Flash_Write
Div - Div_I
Bit_And . Bit_And_| Miscellaneous
Bit_Or - Bit_Or_| - Set_RTC
Bit_Xor Bit_Xor_| Buzz
Square Square._| Floating Point
Square_root Square_root_| Ope rations
Neg Neg_| Add_f
Lsl Lsl | Subt_f
Lsr Lsr_| Mul_f
Rol Rol_| Div_f
Ror Ror_| Square_f
Binary2Bcd Ror_| Square_root_f
Bcd2Binary Sin_f
Text Cos_f
Text Tan_f
Move Arctan_f
Get Number Exp_f
Shift Register Get_Number Ln_f
Init_Shift Log_f
Clock_Shift Power_f

- Instruction Functions

Colter Group Training Manual

Instruction Example

| abel 1 oop

* wait for the 'Go' button to be pressed and rel eased..
wait for 10
wait _not 10

* nmove the cylinder to the end..
turn_on(q0)

wait for |1

* ... and back...

turn_of f(q0)

goto | oop

45 . Instruction Example Colter Group Training Manual

Additional Examples

Example 1
Inputs: 10 Left limit
1 Right limit
Outputs: Q@ Move Right
Q Move Left

The target is moved left until the left limit is reached, waits for 2 seconds, then moves right until the
right limit is reached. Repeat continuously.

11

46 -

Additional Examples

Colter Group Training Manual

47 -

Example 2

Inputs: 10 Left Limit
1 Right Limit
|2 Bottom Limit
I3 Top Limit
| 4 'Go' button
Outputs: Q Table Cylinder: Off = left, On = Right
QA Punch Cylinder: Off = up, On = Down

“GO” Pushbutton

<llll Ql“ ON”
Q1" OFF” ssspp

II3

«==Q0 “ OFF"

QO” ON” llll>

When the 'Go' button is pressed, QO drives the table to be under the punch. After a 0.5 second delay
the punch comes down and then retracts. The table can then return.

Add a 'pause’ button that can be pressed anywhere in the cycle.
Add a display showing the total number of parts produced.

Add a facility to raise an alarm if any movement takes longer than 2 seconds.

Additional Examples

Colter Group Training Manual

Example 3

Inputs: Al O Water Temperature
10 Run Button
Outputs: Q@ Heating Element

While the 'Run' input is on, the water should be heated until a set temperature is reached when the
heater is switched off.

“GQO” Pushbutton

©

10
Q0

Add a header tank to feed the water heater:

Inputs: 1 Low Water Level
| 2 High Water Level
Outputs: Q Water Valve

“GQO” Pushbutton

11 QO

Add a display of the current temperature and the set-point. Allow the user to adjust the set-point using
the 'up' and 'down' function keys.

48 - Additional Examples Colter Group Training Manual

Example 4

Colter Systems Ltd

jalists i
\ St i p

D (2D (B (F

Colter 5% b Colter Systems

Write a program that decodes the key presses and then displays which buttons are pressed. Use a Flag
to show the state of each key.

HMI Operation.

When a function key is pressed or released a three character message is transmitted by the HMI:
Start Character: ASCII <STX>
Data: ASCII ‘0" to ‘?’ representing the pattern of keys pressed
Terminating Character: ASCIlI <CR>.

Examples of the data byte that is sent back for various key presses is shown below:

Key F1 pressed: ASCII ‘1" = 31 (Hex), 00110001 (binary)
Key F3 pressed: ASCII ‘4" = 34 (Hex), 00110100 (binary)
Key F1 and F4 pressed at the same time: ASCII ‘9" = 39 (Hex), 00111001 (binary)
Keys F1, F2, F3 and F4: all pressed: ASCII “?" = 3F (Hex), 00111111 (binary)

Set the communications port to:

Baud Rate: 9600
Data bits: 8
Parity No Parity

49 . Additional Examples Colter Group Training Manual

Example 5

Inputs: 10 Run Button
1 Stop Button
| 2 Pause Button
I3 Increment Set-Point
| 4 Decrement Set-Point

A machine is controlled by the buttons described above. Use allocated RAM to create a data-log that
records the actions of the operator.

Allow the contents of the log to be viewed on the display using the function buttons to scroll through
the records.

Use the Allocated RAM page of the FLEX32 monitor form to extract the logged data to a text file.

Modify the code to store the log on a plug in flash card instead of allocated RAM. Allow for the card to
be erased by the operator.

50 - Additional Examples Colter Group Training Manual

Example 6

Execute module on input interrupt:

Enter the following program into a new module called “conveyor”, this module will mimic a conveyor
motor/encoder combination:

Q = Brake On/ O f

QL = Conveyor Sl ow Fast

@B = Wap and renove

|2 = Stop/ Start

| 3 = Detector

W) = Encoder count (Encoder; 1 pulse =0.1mm)

R R S I R S S Rk kR S Rk R S I Sk S S R S R S R S S
* *
* Training course (worked) Exanple 5 Date: 03/09/01 *
* Modul e: Exanpl e 6 Conveyor Version 1.00 *
* Description: pseudo Conveyor Engi neer: JMG *
* *
R R I I R S S kR Rk S S Sk R S I Sk S R S R S R S S

khkkkhkkhkkhkkhkhkhkhkhkhkhkhkkhkrkkhkrx* Code Entry POI nt khkkhkkhkkhkhkhkhhkhkhhkkhkhkhkhkhkkhkhkhkhkkrkkhkrkk*

khkkhkkhkkhkhkhkhhkhkhkhkkhkhkkkhkhkkhkhkkhkkhkrkk* mEYm khkkhkkhkkhkhkhkhhkhkhhkhkhhkhkhkhkhkhk khkkhkhkkhkkhkrkkkr*x*%

| abel start * start of code
wait for |2

if g0 and gl * if brake is released and notor is in high speed
add_| (30, w0, w0) * run encoder 30x faster

else_if g0 and gl * if brake is released and notor is in slow speed

add_| (1, w0, w0) * run encoder at single speed
end_if
goto start

This example represents an automatic wrapping machine. The machine is started and the conveyor belt is set
at “fast” speed, when a parcel is detected by the detector it needs to slow down the conveyor, increment by a
further 200mm and then apply the brake. The parcel is then wrapped and removed by activating “Q3” whilst
sounding the bleeper and then 2 seconds later the conveyor is started up again in “fast” and waits for the next
package.

Use an interrupt driven module to detect the package and slow the conveyor.

Write the current operation and encoder value to the display.

Note:-

In interrupt mode the entire module will be executed at the exact moment that the specified input
comes on. It should be remembered that executing large sections of code on an input interrupt will
reduce the capacity of the FMT to process the other code within the project. You are limited to
executing 20 steps of code in one interrupt before the firmware will raise an 'Input Interrupt overrun'
error.

51 . Additional Examples Colter Group Training Manual

Example 7

Serial Communications

This exercise requires two FMTs to communicate with each other. The object is to read the first 16 inputs
from one FMT and display their state on the other FMTs outputs.

Method 1. Linkline

Connect both FMT Port 2s together. Set Port 2 to be Linkline with one FMT as station 0 and the other as
station 1. Use the first register of each station’s Linkline block to transfer its inputs to the other stations.

Method 2. Modbus

You will need to connect Port 2 on each FMT to Port 3 on the other. Set up Port 3 as a modbus slave;
9600 baud, 8 data bits, 1 stop bit, no parity. Set Port 2 to user code. Write an application module to use
the Modbus_Master function to read the state of the other FMTSs inputs.

Method 3. Custom serial protocol

You will need to connect Port 2 on each FMT to Port 3 on the other. Set up both Port 2 and Port 3 for
user code at 9600 baud, 8 data bits, 1 stop bit, no parity.

Use the Text function to send the following string out of port 2;
<stx>D<Datal><Data0O><checksum><etx>

where <stx> and <etx> are ASCII control characters,

Datal is a byte representing the state of inputs 8 to 15

Data0 is a byte representing the state of inputs 0 to 7
Checksum is a one byte additive checksum

Use the Serial-In function to receive the same format string from the other FMT on Port 3.

52 . Additional Examples Colter Group Training Manual

Appendix A - Serial Communications

Communication Parameters...

Baud Rate (Speed) 75,110,300,600,1200,2400,4800,9600,19200,38400,
57600

Data Bits 5,6,7,8

Parity (error checking) None, Odd, Even, (Mark, Space)

Stop Bits 1,2,(1.5)

Data for one character...

D=tz Unit for 2 data bits, ewven parity, 1 stop bit.

-
S SN I
1l fofs]afelefelo]1]e]

Stop Bit ~ . Start Bit
Farity Bit D=at= Bit=

Electrical signals

RS232
i il i B
DSVV _________ l_l___.l_[___l__:l_[_______
RS485
+ 3t 12w
otee e

53 - Appendix A - Serial Communications Colter Group Training Manual

Appendix B — ASCII Table

Dec Hex Abbr Dec Hex Chr Dec Hex Chr Dec Hex Chr
0 0 nul 32 20 64 40 @ 96 60)
1 1 soh 33 21 ! 65 41 A 97 61 a
2 2 Stx 34 22 " 66 42 B 98 62 b
3 3 etx 35 23 # 67 43 C 99 63 C
4 4 eot 36 24 $ 68 44 D 100 64 d
5 5 enq 37 25 % 69 45 E 101 65 e
6 6 ack 38 26 & 70 46 F 102 66 f
7 7 bell 39 27 ' 71 47 G 103 67 g
8 8 bs 40 28 (72 48 H 104 68 h
9 9 tab 41 29) 73 49 I 105 69 i

10 A If 42 2A * 74 4A J 106 6A i
11 B vt 43 2B + 75 4B K 107 6B k
12 C Ff 44 2C , 76 AC L 108 6C I
13 D Cr 45 2D - 77 4D M 109 6D m
14 E So 46 2E . 78 4E N 110 6E n
15 F Si 47 2F / 79 4F O 111 6F 0]
16 10 Dle 48 30 0 80 50 P 112 70 p
17 11 dcl 49 31 1 81 51 Q 113 71 q
18 12 dc2 50 32 2 82 52 R 114 72 r
19 13 dc3 51 33 3 83 53 S 115 73 S
20 14 dc4 52 34 4 84 54 T 116 74 t
21 15 Nak 53 35 5 85 55 U 117 75 u
22 16 Syn 54 36 6 86 56 V 118 76 v
23 17 Etb 55 37 7 87 57 W 119 77 w
24 18 Can 56 38 8 88 58 X 120 78 X
25 19 Em 57 39 9 89 59 Y 121 79 y
26 1A Sub 58 3A : 90 5A Z 122 7A z
27 1B Esc 59 3B : 91 5B [123 7B {
28 1C Fs 60 3C < 92 5C \ 124 7C |
29 1D Gs 61 3D = 93 5D] 125 7D }
30 1E Rs 62 3E > 94 5E A 126 7E ~
31 1F Us 63 3F ? 95 5F _ 127 7F del

54 . Appendix B — ASCIl Table Colter Group Training Manual

Appendix C — Ziegler — Nichols Closed Loop Tuning

The Ziegler-Nichols Closed Loop method is one of the more common methods used to tune control loops.
It was first introduced in a paper published in 1942v by J.G. Ziegler and N.B. Nichols, both of whom at the
time worked for Taylor Instrumentation companies of Rochester, NY.

The open loop method is useful for most process control loops. To use the method the loop is tested with
the controller in automatic. The Closed Loop method determines the gain at which a loop with
proportional only control will oscillate, and then derives the controller gain, reset, and derivative values
from the gain at which the oscillations are sustained and the period of oscillation at that gain.

The ZN Closed Loop method should produce tuning parameters which will obtain quarter wave decay.
This is considered good tuning but is not necessarily optimum tuning.

Steps

Ensure that the process is “lined out” with the loop to be tuned in automatic with a gain low
enough to prevent oscillation.

Increase the gain in steps of one-half the previous gain. After each increase, if there is no
oscillation change the setpoint slightly in order to trigger any oscillation.

Adjust gain so that the oscillation is sustained, that is, continues at the same amplitude. If the
oscillation is increasing, decrease the gain sightly. If it is decreasing, increase the gain
slightly.

Make note of the gain which causes sustained oscillations and the period of oscillation.
These are the “ultimate Gain” (GU) and the “Ultimate Period” (PU) respectively.

Calculate the tuning for the following set of equations. Use the set which corresponds with
the desired configuration: P only, PI, or PID.

Tuning Equations
P Only: Gain=0.5GU
Pl: Gain =0.45 GU, Reset =1.2 x PU
PID: Gain = 0.6 GU, Reset = 2 x PU, Derivative = PU/8

Taken from Process Control Solutions

55 . Appendix C — Ziegler — Nichols Closed Loop Tuning Colter Group Training Manual

Example 1 — Worked Answer

This example contains 1 module

khkkkhkhkhkhkhhkhkhhhkhhkhkhhhkhhhhhhhhhhkhhhkhkhhkhhhhkhhhkhhhkhhhkhhhhhhkhhkhkhkhkhkhkhkhkkhkrkkhkrkk**%x

* *
* Training course (worked) Exanple 1 Date: 03/09/01 *
* Modul e: Exanple 1 Version 1.00 *
* Description: Sinple Conveyor Engi neer: JMG *
* *
R R S I R R S kS R Rk R Rk S S Sk R S I kR S S R R S R S S

khkkkhkkhkkhkkhkhkhkhkhkhkhkrkkhkrkkhkr*x*k Code Entry POI nt khkkhkkhkkhkhkhkhhkhkhhkkhhkhkkhkhkkhkhkhkhkkrkkhkrkk*

khkkkhkhkkhkkhkhkhkhkkhkhkhkrkkhkrkkhkrx* SI IVPLE mEYm khkkhkkhkkhkhkhkhkhkhhkkhkhkhkkhkhkhkk khkkhkhkkhkkhkrkk**x

| abel start * start of code

t ur n_on(Q0) *nove target to the right
wait_for 11 *wait for target to reach end
turn_of f(qO0) *Turn of f conveyor

On_Del ay(t0,0,0,2,0) *turn on 2 sec tiner

wai t _for(tO0) *Wait for 2 seconds

turn_on(QL) *nove target to the left
wait_for 10 *wait for target to reach end
turn_off(ql) *Turn of f conveyor

On_Del ay(t0,0,0,2,0) *turn on 2 sec tiner

wai t _for(tO0) *Wait for 2 seconds

goto start

56 - Example 1 — Worked Answer Colter Group Training Manual

Example 2 — Worked Answer

This example contains 3 modules

Modulel

R R S Ik S S kR Ik Rk S S Sk R R S I Sk S S R S I R I S R I S
* *
* Training course (worked) Exanple 2 Date: 29/08/01 *
* Modul e: Exanple 2 Main Version 1.00 *
* Description: Main process control Engi neer: JMG *
* *
IR R S I R S S kR Ik Rk S S kR S kR S R S S R I S

khkkkhkhkkhkhkhkhkhkhkhkhkrkhkrkkhkrx* Alert FUﬂCtIOﬂS khkkkhkkhkhkhkhkhkhhkkhkhkhkhkhkk khkkhkkkhkkhkrkk**x

alert fred when |5 *pause if |5 conmes on

khkkkhkhkkhkhkhkhkhkhkhkhkrkhkrkkhkr*x* Code Entry POI nt khkkhkkhkkhkhkhkhkhkhhkhkhkhkkhkhkk khkhkhkkrkkhkhx**

| abel start * start of code

wait for 14 *start button

turn_on(Q) *nove target to the right

wait_for 11 *wait for target to reach end
On_Delay(t0,0,0,0,5) *turn on 0.5 sec tiner

wai t _for(tO0) *Wait for 2 seconds

turn_on(QL) *nove punch downwar ds

wait_for 12 *wait for punch to hit bottom
turn_on(FO) *flag to say punch was successfu
add(1,r0,r0) *count of how nmany products produced
turn_of f (QL) *retract punch

wait for 1|3 *wait for punch to fully retract
turn_of f (Q0) *retract table

wait_for 10 *wait for table to be fully retracted
goto start *| oop back to start

kkkkhkkhkkhkkhkhkhkhkhkhkkhkhkkhkr*x*k Code for SUbrOUtlne khkkkhkkhkhkkhkhkhkhhkkhkhkhkhkhkk khkkhkkkrkkhk*x*%

sub fred
wait_not 15 *continue cycle if 15 goes off

end_sub

57 - Example 2 — Worked Answer Colter Group Training Manual

Module2

khkhkkhkhkhkhkhkhkhhhkhhkhkhhhkhhhhkhhhhhhhhhkhkhhkhhhkhhhhkhhhkhhhhhkhkhhhhhkhkhk khkhkkhkkhkkhkrkk krkxk**%x

khkkkhkkhkkhkkhkhkhkhkhkhkhkrkkhkrkkhkr*x*k Code Entry POI nt

* *
* Training course (worked) Exanple 2 Date: 29/08/01 *
* Modul e: Exanple 2 Display Version 1.00 *
* Description: Prints Process count to display Engi neer: JMG *
* *
R R S I R S S I kI Rk S kR S kR R S Sk R S S S R S S R S S

khkkhkkhkkhkhkhkhhkhkhhkkhhkhkkhkhkkhkhkhkhkkrkkhkrkk*

| abel start * start of code
if fO * product has been nade
text (tx0, 8) * print total to display
turn_of f(f0) * reset flag for next tine
end_if
goto start
58 - Example 2 — Worked Answer Colter Group Training Manual

Module3

khkhkkhkhkhkhkhkhkhhhkhhkhkhhhkhhhhkhhhhhhhhhkhkhhkhhhkhhhhkhhhkhhhhhkhkhhhhhkhkhk khkhkkhkkhkkhkrkk krkxk**%x

* *
* Training course (worked) Exanple 2 Date: 29/08/01 *
* Modul e: Exanple 2 Alarm Version 1.00 *
* Description: Monitor process duration Engi neer: JMG *
* *
R R S I R S S I kI Rk S kR S kR R S Sk R S S S R S S R S S

khkkkhkkhkkhkkhkhkhkhkhkhkhkrkkhkrkkhkr*x*k Code Entry POI nt khkkhkkhkkhkhkhkhhkhkhhkkhhkhkkhkhkkhkhkhkhkkrkkhkrkk*

nanme * timeout set to 5 seconds..
nove(0,rl, 2) * reset alarmcounts
| abel start * start of code

* this loop is executed 5 tinmes a second..
wai t _for 200ns
wait _not 200ns

* monitor table..
if (g0 and I1=0) or (g0=0 and I0=0)
* if table is noving, but end stop isn't reached..
add(1,r1,r1)
el se
* all ok, clear the count..
nmove(0,r1, 1)
end_if

* ponitor punch..
if (gl and 12=0) or (gl=0 and I|3=0)
* if punch is noving, but end stop isn't reached..
add(1,r2,r2)
el se
* all ok, clear the count..
nove(0,r2, 1)

end_if

* check all axis for error..

if (r1 >) or (r2 >)
turn_on(g6)

el se
turn_off(q6)

end_if

*| oop back to start
goto start

59 . Example 2 — Worked Answer Colter Group Training Manual

Example 3 — Worked Answer

This example contains 2 modules

Module 1

R R S I Sk S S kS Rk kR S S Sk R S I Sk S R S R I S R I S
* *
* Training course (worked) Exanple 3 Date: 30/08/01 *
* Modul e: Exanple 3 Main Version 1.00 *
* Description: Main process control Engi neer: JMG *
* *
IR R S I R S S kR Ik Rk S S kR S kR S R S S R I S

khkkkhkhkkhkhkhkhkhkhkhkhkrkhkrkkhkrx* Code Entry POI nt khkkhkkhkkhkhkhkhhkhkhhkkhhhkkhkhkkhkhkhkhkkrkkhkhxk*

ER IR I I I I S I S I I b b b I b I b A 4 TEIVPERATURE IVO\" Tml '\G IR IR I I S R b I S I I I I b I b I b S b b e b b 3
| abel start * start of code

* move(5000,r0, 1) *make set point 5000

if 10 and ai0 <r0 * @O0 is on and tenperature is |less than setpoint
turn_on(Q) *turn on heater
el se

turn_of f (Q0) *otherwi se turn the heater off
end_if

kkkkhkkhkkhkkhkkhkkhkhkkhkhkkhkrkk* \MTER LEVEL Ivu\" Tml '\G khkkhkkhkkhkhkhkhkhkhhkkhkhkhkkhkhkkhkhkkhkkhkrkkhkr*x*%

if_not |11 *water level is low, turn on header tank
turn_on(QL)

end_if

if 12 *water level is too high, turn off header tank
turn_of f (QL)

end_if

goto start *| oop back to start

60 - Example 3 — Worked Answer Colter Group Training Manual

Module 2

khkhkkhkhkhkhkhkhkhhhkhhhkhhhhhhhhhhkhhhkhhhkhkhhkhkhhhkhhhkhhhkhhhkhhhhhhhkhkhkhhkhkhkhkhkkhkrkkhkrkk**%x

* *
* Training course (worked) Exanple 3 Date: 30/08/01 *
* Modul e: Exanpl e 3 display Version 1.00 *
* Description: Main process control Engi neer: JMG *
* *
R R S I R R S kR kR S S Sk I R S I kR S R I R I S

khkkkhkkhkkhkkhkhkhkhkhkhkhkrkkhkrkkhkr*x*k Code Entry POI nt khkkhkkhkkhkhkhkhhkhkhhkkhhkhkkhkhkkhkhkhkhkkrkkhkrkk*

ER IR I I I I S I S I I b I b I b I b TEIVPERATURE IVO\" Tml '\G ER IR I I S R b I b I I b I b I b I b I S I b b e b b 3
| abel start * start of code

if r2 <> a0 or key-f3 or key-f4 * update the display when the tenperature

changes
nove(ai 0,r2, 1)
wait for P8free * or the setpoint is changed
text (tx1, 8)

end_if

if key-f3 * setpoint is being increnmented

wait _not key-f3
add(, 10, r0) * increnment setpoint by 100
text (tx1, 8)

end_if

if key-f4 * setpoint is being decrenented
wait _not key-f4
subt (, 10, r0) * decrenment setpoint by 100
text (tx1, 8)

end_if

goto start *| oop back to start

61 - Example 3 — Worked Answer Colter Group Training Manual

Example 4 — Worked Answer

This example contains 2 modules

Module 1

R R S Ik S S kR Ik Rk S S Sk R R S I Sk S S R S I R I S R I S
* *
* Training course (worked) Exanple 4 Date: 30/08/01 *
* Modul e: Exanple 4 Main Version 1.00 *
* Description: Colter HM Connection Engi neer: JMG *
* *
IR R S I R S S kR Ik Rk S S kR S kR S R S S R I S

khkkkhkhkkhkhkhkhkhkhkhkhkrkhkrkkhkrx* Code Entry POI nt khkkhkkhkkhkhkhkhhkhkhhkkhhhkkhkhkkhkhkhkhkkrkkhkhxk*

khkkkhkhkkhkkhkhkkhkhkkhkhkkhkhkkhkr*x*k HM [ECO:E KEYS khkkhkkhkkhkhkhkhhkhkhhkhkhhkhkhkhkhkhkk khkkhkhkkrkkkrkk**x

turn_on(f100)

| abel start * start of code
do
serial _in(ro, 10, , , , 3)
** Serial _In(buffer,size,term nator,tineout, node, port)

until p3-ok or p3-err *until port returns a "conms ok" or conms "error"

if roO = *check for valid string..

nove(r1,r100, 1) *nove key val ue into another register
turn_on(f100) *flag to say valid value in R100
end_if

*| oop back to start
goto start

62 - Example 4 — Worked Answer Colter Group Training Manual

Module 2

khkhkkhkhkhkhkhkhkhhhkhhhkhhhhhhhhhhkhhhkhhhkhkhhkhkhhhkhhhkhhhkhhhkhhhhhhhkhkhkhhkhkhkhkhkkhkrkkhkrkk**%x

Modul e:
Descri ption:

L

R R R I S I kI I I I Code Entry PO| nt
On_Del ay(t3,0,0,5,0)

wait_for t3
turn_on(f100)

*

*

Trai ni ng course (worked) Exanple 4
Exanmpl e 4 Di spl ay
Col ter

HM Connecti on

kkkkhkkhkkhkkhkkhkkhkhkkk*x

wait for display to get it's narbles to

when display is powered up a value wll

*
Date: 30/08/01 *
Version 1.00 *
Engi neer: JMG *

*
*

khkkhkkhkhkhkhkhhkhkhhkhkhhkhkhhhkhhhkhhhhkhhhhhhhhhkhkhhhkhhhkhhhkhhhkhhhhkhhhkhkhkhkhkhkhkhkdkkhkrkk**x*%

kkkkhkkhkkhkkhkkhkkhkhkk*k

get her

appear

kkkkhkhkkhkkhkhkhkhkkhkhkkhkrkkhkrx*k HM DI SPLAY KEY PRESSES kkkkhkkhkhkkhkhkhkhkkkhkhkkhkhkkhkhkkhkkhkr*x*

| abel start
wai t _for f100
nove(r 100, f0, 4)

wai t _for p3free
text (tx5, 3)

wai t _for
if fO
text (tx2, 3)

p3free

el se
text (tx3, 3)
end_if

wai t _for
if f1
text (tx2, 3)

p3free

el se
text (tx3, 3)
end_if

wai t _for
if f2
text (tx2, 3)

p3free

el se
text (tx3, 3)
end_if

wai t _for
if f3
text (tx2, 3)

p3free

el se
text (tx3, 3)
end_if
turn_of f (f100)

goto start

*

* % % X

* %

*

start of code

Wait for valid val ue

nove key presses out to flags
Keyl = FO, Key2 = F1..... etc
nmake sure port is not in use
nove to start of first line
nmake sure port is not in use

if flag0 was set then keyl was pressed
so send text saying *ON*

ot herwi se send text saying *OFF*

nmake sure port is not in use
if flagl was set then keyl was pressed

* s0 send text saying *ON**

ot herwi se send text saying *OFF*

nmake sure port is not in use
if flag2 was set then keyl was pressed

* s0 send text saying *ON**

ot herwi se send text saying *OFF*

nmake sure port is not in use
if flag3 was set then keyl was pressed

* s0 send text saying *ON**

ot herwi se send text saying *OFF*

* turn off flag to say display witten to

* waiting for

*

next key press

| oop back to start

on screen

Example 5 — Worked Answer

This example contains 2 modules

Module 1

R R R R R R EEEEEEEREE SRS EE RS R EE
* *
* Training course (worked) Exanple 5 Date: 31/08/01 *
* Modul e: Exanple 5 MAIN Version 1.00 *
* Description: Colter HM Connection Engi neer: IJMs *
* *

khkkkhkkhkkkhkhkhkhhkhhkhkhhkhhhkhhkhhhkhhkhhhhhhhhkdhkhhhhhhdhkdhkhhhdhhdhkdhhdhhrhxddxhdhkdrhrx,xx%x%x

EE R S S S O O I Q)de Entry POI nt kkhkkkkhkkkhkhkhkkhkhkkhhkdhkhkhhkkhkhkhkrhkdhkhkkhhkkdxx*k

ram erase()
nove(0, PO NTERL, 2)

EE S I R I S KEY PRESS STmED |N ALLa:ATED RAM EE R R T I I T I
| abel start * start of code

wait_for 10O or 11 or 12 or I3 or 14 * wait for any input

if 10 * if 10 came on put a 1 in allocated RAM
nove(1, r101, 1) * and then increnent the RAM WRI TE poi nter
add_| (1, PO NTERL, PO NTERL)
wait_not 10 * wait for Input O to go off

else_if I1
nove(2, r101,
add_| (1, PO NTERL, PO NTERL) *etc
wait_not |1

else_if 12
nove(3, r101, 1)
add_| (1, PO NTER1, PO NTERL) *etc
wait_not |2

else_if I3
nove(4,r101, 1)
add_| (1, PO NTER1, PO NTERL) *etc
wait_not 13

else_if 14
nove(5, r101, 1)
add_| (1, PO NTER1, PO NTERL) *etc
wait_not |4

end_i f
call RAM WRI TE_SUB * call subroutine that wites the RAM | ocation
goto start *| oop back to start

EIE R S b S O O R L SUBRQJTI NES kkhkkkkhkkkhkhkhkkhkkhkhkhkkhhkhhkhkkhkhkhhkkrkh hkhkkhkkdxx*

sub RAM WRI TE_SUB

* wite the value of the input pressed registers to the allocated ram
Ram Wi te(r101, PO NTERL, 1)

end_sub

64 - Example 5 - Worked Answer Colter Group Training Manual

Module 2

khkkkhkhkhkhkhhkhkhhhkhhkhkhhhkhhhhhhhhhhkhhhkhkhhkhhhhkhhhkhhhkhhhkhhhhhhkhhkhkhkhkhkhkhkhkkhkrkkhkrkk**%x

* *
* Training course (worked) Exanple 5 Date: 31/08/01 *
* Modul e: Exanpl e 5 RAM READ Version 1.00 *
* Description: Colter HM Connection Engi neer: IJMG *
* *
IR R S I R S S kR Ik Rk S S kR S kR S R S S R I S

khkkkhkhkkhkkhkhkhkhkhkhkhkhkkhkrkkhkr*x* Code Entry POI nt khkkhkkhkkhkhkhkhkhkhhkkhkhkhkkhkhhkhkkhkhkkrkkhkrk**

khkkkhkhkkhkhkkhkhkhkhkhkkhkhkkhkrkkkt*x READ ALLmA\TED RAM khkkhkkhkkhkhkhkhhkhkhkhkhkhkhkkhkhkkhkhkkhkkhkkrkkkr*x*%

| abel start * start of code
wai t _for key-f3 or key-f4
if key-f3
add_| (1, PO NTER2, PO NTER2)
add(1,r103,r103)
wait _not key-f3
else_if key-f4
subt _I (1, PO NTER2, PO NTER?)
subt (1, r103,r103)
wai t _not key-f4
end_if

cal | RAM READ SUB
text (tx10, 8)

goto start *| oop back to start

khkkhkkhkkhkhkhkhhkhkhkhkkhkhkkkhkhkkhkhkkhkkhkrkk* SUBR&JTI NES khkkhkkhkkhkhkhkhhkhkhkhkhkhkhkkhkhkhkhkhkhkhkkhkkhkrkkkr*x*%

sub RAM READ SUB

* read the data back
Ram Read(PO NTER2, r 102, 1) *Ram Read(poi nt er, desti nati on, nunber)

end_sub

65 - Example 5 — Worked Answer Colter Group Training Manual

Example 6 — Worked Answer

This example contains 2 modules + (pseudo conveyor module)

Module 1

R R S I R S Sk I R kR S S Sk R S I kR S R S S R S S
* *
* Training course (worked) Exanple 5 Date: 03/09/01 *
* Modul e: Exanple 6 main Version 1.00 *
* Description: Process code Engi neer: JMG *
* *
R R S I Sk S S kI Rk kS S kS R R S kR S R R S R I S

| abel start * start of code
wait for |2 * wait for the operator to press the start button...
turn_on(q0) * .start notor in fast...

turn_on(qgl)
wait_for fO * wait for the interrupt nodule to see the mark

wait for wo >= wl * wait for encoder count to equal setpoint + encoder

fast _of f (q0) * put brake on

turn_of f(f0) * clear flag...

turn_on(qg3) * start w apper...

r epeat * wait for 2 seconds sounding the buzzer...
Buzz(25)
on_del ay(tO0, 0,0, 0, 50)
wait for tO

end_r epeat

turn_of f(qg3) *stop wrapper. ..

goto start

Module 2

R R S I R S S Rk kS S kR S kS R I R R
* *
* Training course (worked) Exanple 6 Date: 03/09/01 *
* Modul e: Exanpl e 6 | NTERUPT Version 1.00 *
* Description: Process code Engi neer: JMG *
* *
R R S I R R S kR I kR S kR R S I kR S R R S R S

khkkkhkkhkkhkhkhkhkhkhkhkhkhkkhkrkkhkrx*k Code Entry POI nt khkkhkkhkkhkhkhkhkhkhhkkhkhkhkkhkhhkhkkhkhkkrkkhkrk**

nove(w0, wi, 1)
turn_off(ql)
add_|I (, Wi, wl)
turn_on(fO0)

save the encoder value at the registration point

.sel ect slow speed...

..add set-point to encoder to find stop point...
.indicate we have detected the mark to the main nodul e

I T

end_i nt

66 - Example 6 — Worked Answer Colter Group Training Manual

