
An analysis methodology for long vertical 

line-shaft pumps with hydrodynamic 
bearings 
 
D White, T Bracey 
DC White Consulting Engineers Limited, United Kingdom 
 
 
 
 
 
 
 
Abstract 
 
The long drive shafts of vertical axis line-shaft pumps are usually guided by water-
lubricated self-acting journal bearings.  When aligned vertically these bearings have 
no static load, so no linearised radial stiffness.  Industry codes often stipulate linear 
lateral critical speed criteria, and appear not to appreciate the dominance of non-
linearity, as reflected in the academic literature.  This paper presents a new 
methodology and underlying bespoke software, which shifts the criteria towards 
predicting bearing loads, housing vibrations and modal mass rather than just 
critical speeds.  Following review, this approach has been accepted by various 
companies and institutions for dozens of pumps. 

 
 

1. INTRODUCTION 
 
This paper describes an approach to assess the lateral 
vibration characteristics of a vertical shaft system lubricated 
by self-acting water bearings, typically employed for 
pumping sea water fire-fighting systems.  Pumps are 
typically made up of 20m to 50m long train of connected 
drive shaft sections with impellors at the bottom, concentric 
within a train of stationary columns which support the drive 
via bearings at each flange, typically at 2m to 3m centres. 

 
Lateral vibration analyses as per API 610 (1) fall into two 
categories: ‘rigid’ (or rather, ‘classically stiff’) and ‘flexible’.  
Rigid rotor systems run below their fundamental lateral 
critical speeds when analysed as having infinitely stiff 
bearings.  The classification of ‘flexible’ otherwise applies, 
requiring dynamic analyses incorporating the finite stiffness 
and clearances of the bearings.  The bearings are often 
axially fluted rubber water-lubricated journal bearings, 
concentric with the shaft sleeves, typically 70mm to 120mm 
in diameter at the rotor-stator interface.  These have 
proved highly effective in practice, but their use with 
vertical axis concentric shafting has received little attention 
in the academic literature, despite substantial attention to 
horizontal axis devices. 
 

Left: Figure 1 – Typical pump layout and water level 
 



When aligned vertically these bearings have no static load and hence no linearised 
radial stiffness.  Thus the use of lateral critical speeds, a linear phenomenon, to 
infer vibration levels in a rotor dominated by non-linearity is a non-sequitur.  
Industry codes such as NFPA 20 (6) stipulate critical speed separation margins of 
±25% from the running speed, and we find that any realistic bearing treatment (as 
herein discussed) will fail this test, calling designs with half a century of pedigree 
needlessly into question. 
 
Further, classification as a ‘rigid’ rotor system is often technically possible for  
bearing spans of up to 2 metres when assuming infinite bearing stiffness.  In these 
cases, the damped imbalance response tends to produce vibration amplitudes well 
below the bearing clearances, making the assumption of infinite bearing stiffness 
absurd.  This is a game of semantics best avoided; a thorough understanding is 
needed. 
 
 
2. BEARING MODEL OVERVIEW 
 
Within these water-lubricated bearings, hydrodynamic positive pressures are 
created by drawing water into a converging clearance and negative pressures in a 
diverging clearance.   
 
The pressure field can be determined analytically using the widely applied Euler film 
equation, which is a simplification of the Navier-Stokes equations.  The variation of 
bearing radial and tangential hydrodynamic forces versus the eccentricity ε (the 
relative offset of the axes between the rotor and housing, non-dimensionalised by 
the radial clearance) can be computed.  This gives the bearing constants, feeding 

into an analysis of the entire rotor system.  This treatment is well established, and 
bearing manufacturers often have proprietary software to turn bearing geometries 
into dynamic characteristics, often with high sophistication. 
 
Normally, a static load would bias a horizontal shaft into an eccentric equilibrium 
position, and small vibrations would trace out elliptical orbits, giving linearised 
stiffness and damping coefficients about that point.  However for a concentric orbit, 
reference (2) equation (6-16) gives the dynamic radial force (in the rotating frame) 
for an ‘uncavitated long bearing’ as: 
 

 
 
(A ‘long’ bearing disregards the end effects, so has a closed-form solution, but the 
principle stands.)  With no static load, and hence a circular concentric orbit, the 

dimensionless radial velocity  is zero at any eccentricity ε, so the radial stiffness 

must also be zero.  (This assumes no cavitation, as discussed below.) 
 
The point is subtle, but upon realisation one might wonder why these bearings are 
used in the vertical axis at all if they offer no stiffness.  Rubber self-lubricated 
journals are very good value, have decent dry lubrication properties and they 
tolerate impact and sliding for the short duration of dry start-up.  The prediction of 
any actual hydrodynamic effect has not been the driving force behind their 
evolution.  These bearings typically have 8 to 10 axial grooves to improve the 
admission of lubricating water and the expulsion of contaminants.  These will keep 
the film pressures at the edges of the lands at the local water pressure, greatly 
reducing the magnitude of the pressures developed.  Figure 2 shows a typical 
unwrapped pressure map for the Euler film equation, computed using an in-house 
solver.   



 

 
Figure 2- Typical Bearing Pressure Map for Parallel Eccentricity of 0.5. 

 
This field produces non-zero damping, as per a classic uncavitated bearing. 
 
The bearing film in figure 2 is 160 mm long (i.e. along the pump axis), 80 mm in 
diameter, has 10 lands, each 17.5 mm wide, and a concentric radial clearance of 
91 µm.  Sea-water properties are assumed at 10°C.  At an eccentricity of 0.5 this 
produces peak land pressures of ±7,427Pag (±1.05 psig) at 1,750 rpm, creating a 
linearised damping of 4,000 N.s/m.  At eccentricities of 0.25 and 0.75, the damping 
is computed at 2,770 N.s/m and 8,520 N.s/m respectively. 
 
The load-carrying characteristics of the bearing are determined not only by the 
hydrodynamics but also how the rubber deflects under pressure, changing the size 
of the film under load.  This problem was addressed by coupling the numerical 
solution of the Euler film equation to a finite element model of the rubber surface of 
one bearing groove.  The stiffness of this groove was defined at discrete points, and 
a unit displacement was applied to each node whilst constraining the remainder.  
The reaction forces seen at each node represent a row of the inverted stiffness 
matrix. 
 
Cabrera et al (3) makes the salient point that the high Poisson’s ratio of rubber 
means that any inward deflection under high pressure at one location requires an 
almost equal volume of outward deflection elsewhere.  Cabrera observed that static 
loading on a rubber bearing thus created pinch-points in the fluid film towards the 
outer edges of the lands, creating pressure spikes with a plateau in between.  The 
effect of the Euler film equation appeared to be present but was far from dominant. 
 
It was found that with a concentric orbit having an eccentricity of 0.75 of the 
clearance, the hydrodynamic pressures caused rubber deformations of only several 
microns.  Thus the behaviour would effectively be the same as a rigid journal.  Even 
at higher eccentricities, our results could not reproduce Cabrera’s phenomenon for 
an axially grooved bearing, most likely because the many grooves offer the rubber 
space to expand circumferentially rather than radially.  (When the pinch-points 
were artificially introduced, the general shape of the pressure profile seen by 
Cabrera was however reproduced.) 
 
One crucial difference between grooved and un-grooved bearings is that short lands 
typically develop only small gauge pressures.  Vance (2) describes how the suctions 



created by a diverging cavity are often disregarded below around -5 psig 
(-34,474 Pag), even though well above the fluid’s saturation vapour pressure.  This 
could be more due to dissolved oxygen being pulled from solution than cavitation 
per se.  The effect of disregarding the negative gauge pressure (often termed a ‘pi-
film’ since only half of the bearing with the positive pressure is treated as active) is 
to create a net force with a component of stiffness.  However, with short lands the 
suctions predicted by the Euler film equation are very modest (in the above case 
7247 Pa, -1.05 psig), and so this ‘cavitation’ effect would on this basis not be 
expected.  Thus the pressure field would be a ‘two-pi-film’ so would not create a 
component of stiffness for a concentric orbit, but does create a damping term. 
 
This of course has to break down when the shaft meets the bearing under high 
excitation, and several additional physical mechanisms are invoked within a small 
span of eccentricity: 
 

 The lubrication will cease and the Euler film equation must break down.   
 The effect of rubber deflection may or may not create constrictions, 

depending on the groove geometry.   
 The bearing stiffness (as viewed by the rotor) will asymptote towards being 

stiffly coupled to the stator as rubber-to-metal contact is established.   
 The rubber will apply some friction force at any contact points, subject to 

some level of lubrication.   
 

All of these effects are coupled, and the problem quickly becomes very complicated.  
However, the bearing force would increase rapidly, transitioning from relatively 
flexible to relatively stiff compared with the shaft flexure terms within a very 
narrow window of eccentricity.  The bearing stiffness would thus abruptly adopt the 

static stiffness of the rubber (as part of the column stator train).  It is deemed 
sufficient to apply zero radial stiffness for low eccentricities, and a very high radial 
stiffness when rubber-to-metal contact is established.  In developing the 
procedures described here, it was found that applying a high secant radial stiffness 
was very unstable for multi-degree of freedom systems.  Instead, an contact logic 
routine was set up to solve sequentially for all the contact forces required to 
constrain the rotor to within any bearing displaying contact, and using an assumed 
friction coefficient.   
 
Since the damping does not substantially affect the critical speeds, it can be 
linearised at a value determined by iteration.     
 
 
3. SOLVER DESCRIPTION 
 
The complex behaviour of the pump system was analysed using an in-house finite 
element beam solver.  This has been verified using several back-to-back 
comparisons with full three-dimensional finite element models assuming linearised 
bearing stiffness.  In broad outline, the solver constructs two-noded vertical beam 
elements, each node with a complex lateral and rotational degree of freedom.  The 
Euler-Bernoulli beam formulation written as part of a damped system takes the 
following form: 
 

 
 
The excitation forces and moments are on the left hand side, and internal forces 
are on the right including flexural stiffness, damping and inertia.   



Gyroscopic effects are also modelled using the formulation of Genta (4), creating 
skew-symmetric transverse rotational inertia terms.  (Given the slenderness of the 
system, the effect is small.)  Gravity and thrust are also included as stiffening 
effects; pump thrust being simplified as varying with the speed squared.  Both the 
mass of internal water and external virtual water mass were included.   
 
At increments of 1 rpm, the solver assembles a complex dynamic structural 
stiffness matrix by superimposing adjacent element equations.  Since the damping 
model is conceived on the basis of known dashpot constants (rather than using a 
modal or Rayleigh damping model) and, given that gyroscopic effects are included, 
the full dynamic coupling matrix has to be inverted at each speed.  Given the 
modest number of degrees of freedoms (typically around 500 to 1000), this is 
numerically undemanding.  Columns of the inverse matrix can be populated via a 
sparse BiCGSTAB method by setting the respective source terms to unity. 
 
The force excitation vector (defined in the real plane) is derived by assuming each 
element carries the given balance-grade of G2.5, using the method as defined in 
reference (5).  This gives a force per unit mass which is applied to each rotor 
element.  A typical pump at 1800 rpm will have a total excitation force of around 
500N distributed along its length, perhaps 30N of which for each impeller.  The sign 
of this load over the rotor elements is highly influential, so the mode shapes 
nearest to the running speed are computed and then the signs of the excitation 
forces are matched in sympathy.  Figure 3 shows a typical response curve, biasing 
the excitation to two modes near the running speed.   
 

 
Figure 3- Typical system response vs running speed without contact 



This indicates that the shaft will touch the journals at certain speeds when not 
using the contact model.  Contact is handled within the software as an additional 
constraining force.  The magnitude and direction is computed after the no-contact 
scenario and superimposed.  
 
First we define the required displacement in a rotating Argand plane, defined as 
real in the plane of the signed excitation vectors.  Applying a force in a given 
direction will at equilibrium cause the displacement to move in a direction rotating 
in the anti-clockwise sense by a compliance angle κ = tan-1 [ Im(S-1

i,i) / Re(S-1
i,i) ] 

where S-1 is the inverted dynamic stiffness matrix (the compliance matrix), and (i,i) 
the diagonal indices.  This is depicted in the left of Figure 4.   
 
Since the contact force is applied at the final location, the friction angle μ must be 
applied at this hitherto unknown position.  The problem is solved trigonometrically, 
as shown in the right of Figure 4. 
 

 
Figure 4 - (left) Depiction of compliance angle,  

(right) Definition of constrained position 
 
With X being the complex initial position (prior to applying contact model), C the 
bearing clearance, and α and γ defined as depicted, the desired displacement vector 

δ can be shown to satisfy: 
 

Re(δ) = - Re(X) + C cos (γ + α) 
Im(δ) = - Im(X) - C sin (γ + α) 

 
The required complex constraining force fi is then computed from the complex 
compliance matrix S-1 to satisfy the complex displacement δ. 

When more than one bearing is predicted to be in contact (generally the case), the 
different contact forces need to be solved simultaneously.  The procedure is to first 
solve without contact, then find the 'worst offending' node, apply the required 

constraining force, re-compute all displacements to find the new 'worst offending' 
node, and so on.  Then a small matrix is set up to solve this along with the existing 
contacts, and this is repeated until all the bearings satisfy the contact constraints.  
 



In each case, an equal and opposite force is applied to the vertical column tube, 
and the weak coupling is iterated to convergence.   
 
Figure 5 shows a frequency response with these constraining forces included. 
 

 
Figure 5 – Typical system response vs running speed with contact 

 
4. PROPOSED ANALYSIS CRITERIA 
 
The bearing damping forces are usually in the order of 1N to 10N, and any 
constraining forces can increase this up to around 500N.  The manufacturer’s 
practical design loading for bearing life at continuous running gives capacities 
typically around 2kN to 5kN, showing a fair margin.  These bearings are found to 
wear in the field, so the activity of quantifying the loading provides a metric to 
compare new pump designs to existing pumps in the field, thereby providing 
reassurance that wear will not be unduly accelerated by any dynamic behaviour.   
 
The stator displacements can also be quantified and compared to criteria such as 
API 610.  Rotor modal mass participations are a further metric, but these are 
believed to be less instructive. 
 
Different designs of pump will vary key parameters such as the overall length, the 
span of each column and rotor section, shaft diameters, bearing clearances, speed 
and design duty thrust.  No matter the system however, the linear critical speeds 



will populate a list of 20 or more modes.  With critical speeds near the running 
speed having a separation of typically 10% to 20%, the separation margins are 
often far smaller, sometimes 0%, rarely achieving the target ±25%.  The potential 
errors in the dynamics and hence critical speeds are comparable to separation 
margins in at least some cases.  For this reason, the method considers bearing 
loads and column vibrations as if running the pump directly at the nearest pair of 
critical speeds, rather than just the running speed.  This goes most of the way to 
mitigating errors in the dynamics.  
  
Studies for bearings with new (unworn) and double clearances are also routinely 
run.  The characteristic damping is typically about 4-5% of critical damping for 
unworn clearances, falling to around 0.5% when worn to double clearances.  Two 
effects here compete: 1) the reduced damping increases rotor resonant response, 
and 2) larger clearances tend to prevent contact, reducing the vibration transmitted 
to the columns and hence cross-talk.   
 
Variations of water level (and hence where column virtual water mass is applied) 
are also considered, although the effect on the column modes has little impact on 
rotor, although can encourage rotor-stator cross-talk, as was the case in Figure 5. 
 
Problematic bearing loads and column vibrations are rarely predicted, as indeed is 
observed in reality.  In the rare case illustrated in Figure 5, the column marginally 
exceeded the API 610 criteria for a narrow speed range, although this was 
discretionarily accepted.  Compared to rotating systems in general, the 
acceptability of these pumps is actually quite insensitive to the main design 
parameters, as even the resonant response tends to prove acceptable.  It is 
believed that practical issues such as the concentricity of the shafting relative to the 

column, the gearbox condition, the stiffness of the foundations, and the size and 
quantity of water impurities are bigger factors than the dynamics in determining a 
line-shaft pump’s vibration levels. 
 
 
5. CONCLUDING REMARKS 
 
Together, these new metrics provide a better means of substantiation than existing 
industry codes.   
 
This method bears the burden of self-justification, and yet has succeeded in many 
levels of proprietary review.  However, a universally accredited method would be 
better for all parties. 
 
A further burden is that full-scale instrumented testing of a, say, 50m long marine 
device is difficult to economically justify, given the half-century pedigree of 
successful use.  Although it would miss the important point about the imbalance 
signs along the rotor, testing on individual vertical axis bearings would be a 
sensible starting point.  It appears that manufacturers (on whom this duty would 
normally fall) are no more aware of the analytical issues herein described than the 
industry codes or academic literature.  Instrumented empirical validation is required 
to elevate the authority of this method, and this publication hopes to raise 
consciousness.  
 
The lack of detail in industry codes and the academic literature on vertical axis 
journal bearings might actually reflect their enduring success in the field.  However, 
modern practice is heading toward analysis over ‘appeal to prior experience’, and it 
is inevitable that some older problems require renewed attention. 
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