DELTA MEMBRANE SYSTEMS LTD

BASEMENT PUMP \& DRAINAGE

cONTENTS

DELTA MEMBRANES 03
SERVICES 04
BASEMENT PROTECTION 05
GROUND \& SURFACE WATER 06
GROUND \& SURFACE WATER - DRAINAGE 08
DUAL V3 010
DUAL V3.1 012
DUAL V4 014
DUAL V6 016
800 SERIES GROUND \& SURFACE WATER STATIONS 018
1000 SERIES GROUND \& SURFACE WATER STATIONS 020
FOUL WATER PUMP STATIONS 022
FOUL V3 024
800 SERIES FOUL WATER STATIONS 026
1000 SERIES FOUL WATER STATIONS 028
ALERTMAXX2 030
POWERMAXX 032
HI-POWERMAXX 033
ANCILLARY PRODUCTS \& MAINTENANCE 034
'FREE LIME' RISK 035

DELTA MEMBRANES

Delta Membrane Systems Limited is the leading Type C Cavity Drain Membrane Manufacturer in the United Kingdom. Our extensive range of waterproofing and damp proofing products are suitable for basement drainage and structural waterproofing (both for new build and existing structures) and in flood resilience projects.

Installing a Delta Membrane System offers complete protection to structures from ground water ingress and contaminates. Our products comply with British Standard BS 8102:2009 and are BBA Certified. Our dedicated Technical Team offer knowledge and experience in waterproofing design solutions and can provide on-site assistance and advice throughout a project.

BS 8102:2009 (Code of Practice for Protection of Below Ground Structures Against Water from the Ground) recommends that every Design Team should incorporate a Waterproofing Design Specialist.

Delta Membrane Systems Limited has a dedicated team of Waterproofing Design Specialists. Our trusted Technical Team offer knowledge and experience and are able to provide expertise in structural waterproofing. As a Waterproofing Specialist Manufacturer, we work with architects, surveyors, contractors and engineers alike to provide a design service which complies with BS 8102:2009 and offers the highest level of technical expertise and assurance.

SERVICES

Delta Membrane Systems Limited provides a full range of waterproofing solutions suitable for all new, retrofit and refurbishment construction. With over 125 years of manufacturing experience, Delta is an impeccable partner on every project. Our skills have been mastered through experience in the waterproofing industry. Delta's trusted Technical Team will offer assistance from concept to completion. Our hands on approach and knowledge is what sets us apart.

DESIGN SUPPORT

Architecture knowledge Concept and waterproofing solutions

- Advice on design and best practice
Custom solutions, as each project is unique in requirements Qualified CSSW staff (named on the Waterproofing Design Register)

SPECIFICATION SUPPORT

- Detailed drawings including CAD

Watertight and locking down structure concepts

- Specifications
- BIM
- NBS Plus
- RIBA Product Selector

SITE SUPPORT

- Training and guidance offered at every step
- Technical Team attendance at site meetings
. Knowledge and experience
- Troubleshooting solutions

BASEMENT PROTECTION

One of the main design considerations when designing a Cavity Drain System is to consider managing the collection and discharge of ground and/or foul water.

The majority of projects will require a collection sump + pump to automatically manage the evacuation of water ingress. A sump + pump solution will require mains power to operate.

Peace of mind is offered with the MaxxFamily product range. The AlertMaxx2 is a high level water alarm and monitoring system which will predictively alert a homeowner when there is a potential fault or service required to the sump pump. Our extensive range of battery back-ups offer unrivalled technology and will keep the sump pump working in the event of power failure.

The number of pump systems required for each project will (in part) depend on the overall basement size, perimeter and also the method of drainage - Delta Channel, Modular or a combination of both.

External surface water from light-wells, courtyards and terraces may be drained into the ground water sump, providing the area of external surface water collection does not exceed $12 \mathrm{~m}^{2}$ to each sump - if the external area is greater, advice should be sought from the Delta Technical Team.

For each sump system, the recommendation is for two pumps in case of failure of the duty pump. In the event of failure of the duty pump, the secondary back up pump will take over, therefore significantly reducing the risk of potential flooding. In addition, a minimum industry standard would be to include a high level alarm such as the Delta AlertMaxx2 and power back up system such as Delta PowerMaxx in case of mains power failure. Again reducing the risk of potential flooding to the basement.

GROUND \& SURFACE WATER

GROUND \& SURFACE WATER

A range of pump stations designed to collect ground and/or surface water from the smallest domestic basement through to large commercial projects.

Our range of products have been designed specifically for the application and brings the technology of waterproofing and discharging water from properties under one responsibility, fully integrated and coordinated.

CALCULATING FLOW RATES (GROUND WATER)

- It is virtually impossible to calculate water ingress through a structure, however, we need to make some assumptions and based on our experience we allow $0.001 \mathrm{l} / \mathrm{s} / \mathrm{m} 2$ of basement slab and walls and then allow a safety factor of 5. However, if the basement pumps are monitored by AlertMaxx2 \& SideWinder we can build up a dataset for water ingress and make recommendations if and when necessary.

CALCULATING GROUND WATER INGRESS

It is very difficult to obtain data for water ingress, we need to assume.. For basements above the water table, assume 0.1//s per 100 m 3 basement wall and floor area (or $0.001 \mathrm{l} / \mathrm{s} / \mathrm{m} 2$). Multiply by a factor of safety of 5 . For basements below the water table assume $0.2 \mathrm{l} / \mathrm{s}$ per 100 m 3 basement wall and floor area (or $0.002 \mathrm{l} / \mathrm{s} / \mathrm{m} 2$). Multiply by a factor of safety of 5 .

GROUND WATER

Ground water collects or flows beneath the Earth's surface, filling the porous spaces in soil, sediment and rocks, originating from rain, melting snow and ice and is the source of water for aquifers, springs and wells.

- The basement structure should offer the primary resistance to passage of water.

PLEASE NOTE

For any calculation, detailed reference should be made to the relevant British/European Standard.

Slab $=25 \mathrm{~m} \times 4 \mathrm{~m}=100 \mathrm{~m} 2$
Wall $1=25 \mathrm{~m} \times 3 \mathrm{~m} \times 2 \mathrm{no}=150 \mathrm{~m} 2$
Wall 2 $=3 \mathrm{~m} \times 4 \mathrm{~m} \times 2 \mathrm{no}=24 \mathrm{~m} 2$
Total area $=274 \mathrm{mz}$
Multiply total area by flow rate and factor of safety $=274 \mathrm{~m} 2 \times 0.0001 \mathrm{l} / \mathrm{s} / \mathrm{m} 2 \times 5=1.37 \mathrm{l} / \mathrm{s}$

CALCULATING FLOW RATES (SURFACE WATER)

- When selecting a pump station for collecting \& discharging surface water we take into account a 5 minute storm event and the storage required for 24 hours, we always use a 500 year return period for basement applications and 24 hour storage as they are considered critical. Battery backups can be used instead of physical storage.
Example: 25m2 surface water application i.e. patio or small rear roof elevation Flow rate: Area $\times \mathrm{l} / \mathrm{s} / \mathrm{m} 2=1.6 \mathrm{l} / \mathrm{s}$
5 minute storage: Area $\times \mathrm{l} / \mathrm{s} / \mathrm{m} 2 \times 5$ minutes
24 hour storage: Area $\times 0.11$

CALCULATING SURFACE WATER FLOW RATES \& STORAGE

Design intensity for London based on BS EN 752 (2008)

Return period	$\mathrm{L} / \mathrm{s} / \mathrm{m} 2$	$\mathrm{~mm} / \mathrm{hour}$
1 year	0.016	57.6
5 years	0.024	86.4
50 years	0.040	144.0
500 years	0.064	230.4

WHY FOUL \& GROUND WATER SHOULD NEVER BE MIXED

1. Foul gas will be able to migrate into the cavity spaces behind the membrane and will be able to escape into the building at the top edges of the membrane sheet, which must be left unsealed.
2. In the event of a pump station becoming inoperative, continual use of the sanitary appliances may result in the foul level rising above the normal operating level to the extent that effluent would back-fill the cavity drainage system and eventually escape into the cavities, resulting in contamination of floor construction.

BASEMENT WITHOUT FLOOD PROTECTION

- If the sewer becomes surcharged and if the road surface floods, water will back-up in the house drain and flood the basement.
- If the sewer causes the surface of the road to flood, then the level of the flood water in the basement will reach the same level.

FLOOD PROTECTION MEASURES

- A pump station with an anti-flooding loop in the discharge pipe is the best method in accordance with BS12056-4.
- If the sewer becomes surcharged and if the road surface floods, the basement will remain safe.
- Flood water cannot pass over the top of the anti-flooding loop.
- Benefits:
- Flood protection is not reliant on valves which may leak and won't prevent odours travelling back into the property.

GROUND \& SURFACE WATER - DRAINAGE

PERIMETER DRAINAGE CHANNEL

Channel typically laid level in a rebate in the structural slab. As the name suggests it is run around the perimeter of the basement, but can also be installed across the basement to improve drainage. The maximum distance from the end of channel to the sump is 25 linear meters, therefore one sump can be used for a 50 m linear run where the sump is installed centrally.

MODULAR DRAINAGE

110 mm drainage pipe laid below or in the slab to a fall of 1:100. One pump station can serve areas over 200m2. Typically one drainage point is required every 12 m 2 of basement slab area.

SURFACE WATER LIMITS FOR GROUND WATER SUMPS

Where rainwater from a total surface area exceeding 12 m 2 is to be pumped it is recommended this water is drained to a dedicated pump station.

Pump station for a cavity system \& external area MORE THAN 12 m 2

Pump stations for a cavity system \& external area MORE THAN 12 m 2

CONSTANT RAINFALL

Constant rate rainfall intensity for an event of 5 minutes duration with a probability of exceedance of 0,002 in 1 year (a return period of 500 years).
We use this figure as basement design is considered to be critical. Figures and map available from BS EN 752:2008

Pump station for a cavity system \& external area NOT MORE THAN 12 m 2

DUAL V3

A packaged pump station designed to collect ground water via perimeter channel or 110 mm pipes (129 detail) and/or clear opening to the top of the chamber. This chamber cannot collect grey water from showers and wash hand basins, or foul from a WC (See 'Delta Foul V3 Sump'). A typical application would be collecting ground water from a basement up to $150 \mathrm{~m}^{2}$ and surface water from a $12 \mathrm{~m}^{2}$ lightwell.

The Dual V3 pump station has been specifically designed for below ground applications. The chamber is manufactured from HDPE and able to withstand hydrostatic forces encountered in applications with high water tables.

The pump station is delivered as a complete package including, chamber, all internal pipework and two powerful V_{3} pumps. It is designed to be installed by contractors with competent building, plumbing and electrical skills.

PUMP STATION TECHNICAL DATA

DMS Code	DMS-164
Chamber Material	High Density Polyethylene
Volume Below Inlets	87 L
Total Volume	217 L
Fixed Inlets	$3 \times 110 / 160 \mathrm{~mm}$
Cable Duct Size	50 mm
Discharge Connection	$1.25^{\prime \prime} / 32 \mathrm{~mm}$ BSP Class C
Discharge Pipework	$1.25^{\prime \prime} / 32 \mathrm{~mm}$ BSP Class C
Internal Pipework	$1.25^{\prime \prime} / 32 \mathrm{~mm}$ BSP Class C
Cable Duct Pipework	$2 " / 50 \mathrm{~mm}$ White Waste Pipe

The Dual V_{3} is simple to install, the chamber sits on a concrete base, inlets in the form of perimeter channel or modular 110 mm system are connected into the chamber, a 32 mm discharge pipe connects to the gravity drain and a 50 mm cable duct to bring electrics and control cabling from the chamber into a dry environment. The chamber is filled with water to prevent buoyancy and is surrounded with concrete. A simple rule of thumb is the top of the chamber should be level with the structural slab or no deeper than 500 mm from the final finishes.

The installation is to be topped off with a double sealed cover supplied by the contractor to tie in with the general floor finish. Remember this product need to be accessed for service so care should be taken with its location.

For full installation instructions see 'Delta Dual V3 Installation Instructions' on our website.

DUAL V3 - DMS-164

PUMP DATA	
Pump Model	V_{3}
Voltage	230 V
KW Rating P1 / P2	$0.43 / 0.18 \mathrm{~kW}$
Full Load Current	1.9 A
Fuse Spur Rating	13 A Non-switched
Typical Duty	$2.0 \mathrm{l} / \mathrm{s}$ @ 3.5m
Power Phase	Single
Weight	5.64 kg

DUAL V3.1

A packaged pump station designed to collect ground water via perimeter channel or 110 mm pipes (129 detail) and/or clear opening to the top of the chamber. This chamber cannot collect grey water from showers and wash hand basins, or foul from a WC (See 'Delta Foul V_{3} Sump'). The Dual $V_{3} .1$ is ideal for jobs where one or less inlet is required and space is limited. A typical application would be collecting ground water from a basement up to $150 \mathrm{~m}^{2}$ and surface water from a $12 \mathrm{~m}^{2}$ lightwell.

The Dual $\sqrt{ } 3.1$ pump station has been specifically designed for below ground applications. The chamber is manufactured from HDPE and able to withstand hydrostatic forces encountered in applications with high water tables.

The pump station is delivered as a complete package including, chamber, all internal pipework and two powerful $\sqrt{ }$ 3 pumps. It is designed to be installed by contractors with competent building, plumbing and electrical skills.

PUMP STATION TECHNICAL DATA

DMS Code	DMS-166
Chamber Material	High Density Polyethylene
Volume Below Inlets	87 L
Total Volume	217 L
Fixed Inlets	$1 \times 110 / 160 \mathrm{~mm}$
Cable Duct Size	50 mm
Discharge Connection	$1.25^{\prime \prime} / 32 \mathrm{~mm}$ BSP Class C
Discharge Pipework	$1.25^{\prime \prime} / 32 \mathrm{~mm}$ BSP Class C
Internal Pipework	$1.25^{\prime \prime} / 32 \mathrm{~mm}$ BSP Class C
Cable Duct Pipework	$2 " / 50 \mathrm{~mm}$ White Waste Pipe

The Dual V_{3}. 1 is simple to install, the chamber sits on a concrete base, inlets in the form of perimeter channel or modular 110 mm system are connected into the chamber, a 32 mm discharge pipe connects to the gravity drain and a 50 mm cable duct to bring electrics and control cabling from the chamber into a dry environment. The chamber is filled with water to prevent buoyancy and is surrounded with concrete. A simple rule of thumb is the top of the chamber should be level with the structural slab or no deeper than 500 mm from the final finishes.

The installation is to be topped off with a double sealed cover supplied by the contractor to tie in with the general floor finish. Remember this product need to be accessed for service so care should be taken with its location.

For full installation instructions see 'Delta Dual V3 Installation Instructions' on our website.

RECOMMENDATIONS

AlertMaxx2 (DMS-298)
PowerMaxx (DMS-280)

SPECIFICATION

NBS specification R18 (clause 310) Pumping Stations \& Pressure Pipelines.

DUAL V3.1 - DMS-166

PUMP DATA	
Pump Model	V_{3}
Voltage	230 V
KW Rating P1 / P2	$0.43 / 0.18 \mathrm{~kW}$
Full Load Current	1.9 A
Fuse Spur Rating	13 A Non-switched
Typical Duty	$2.0 \mathrm{l} / \mathrm{s}$ @ 3.5 m
Power Phase	Single
Weight	5.64 kg

DUAL V4

The Dual V_{4} is an upgrade to the standard Dual V_{3} where higher discharge heads are required. Typically, for double and triple depth basements or where long discharge runs are required resulting in higher than normal pipe work losses. The Dual V4 is suitable for basements that require a head height greater than the V_{3}. The Dual V_{4} can pump $12 \mathrm{~m}^{2}$ of surface area in addition to ground water.

The Dual V_{4} has been specifically designed for below ground applications. The chamber is manufactured from HDPE and is able to withstand hydrostatic forces encountered in applications with high water tables.

The pump station is delivered as a complete package including chamber, all internal pipework and two powerful V4 pumps. It is designed to be installed by contractors with competent building, plumbing and electrical skills.

PUMP STATION TECHNICAL DATA

DMS Code	DMS-217
Chamber Material	High Density Polyethylene
Volume Below Inlets	137 L
Total Volume	273 L
Fixed Inlets	$3 \times 110 / 160 \mathrm{~mm}$
Cable Duct Size	50 mm
Discharge Connection	$2^{\prime \prime} / 50 \mathrm{~mm}$ BSP Class C
Discharge Pipework	$2^{\prime \prime} / 50 \mathrm{~mm}$ BSP Class C
Internal Pipework	$1.25 " / 32 \mathrm{~mm}$ BSP Class C
Cable Duct Pipework	$2 " / 50 \mathrm{~mm}$ White Waste Pipe

The Dual V_{4} is simple to install, the chamber sits on a concrete base, inlets in the form of perimeter channel or modular 110 mm system are connected into the chamber, a 32 mm discharge pipe connects to the gravity drain and a 50 mm cable duct to bring electrics and control cabling from the chamber into a dry environment. The chamber is filled with water to prevent buoyancy and is surrounded with concrete. A simple rule of thumb is the top of the chamber should be level with the structural slab or no deeper than 500 mm from the final finishes.

The installation is to be topped off with a double sealed cover supplied by the contractor to tie in with the general floor finish. Remember this product need to be accessed for service so care should be taken with its location.

For full installation instructions, see 'Delta Dual V4/V6 Installation Instructions' on our website.

RECOMMENDATIONS

AlertMaxx2 (DMS-298)
Hi-PowerMaxx (DMS-364)

SPECIFICATION

NBS specification R18 (clause 310) Pumping Stations \& Pressure Pipelines.

DUAL V4 - DMS-217

PUMP DATA	
Pump Model	V_{4}
Voltage	230 V
KW Rating P1 / P2	$0.75 / 0.36 \mathrm{~kW}$
Full Load Current	4.0 A
Fuse Spur Rating	13 A Non-switched
Typical Duty	$2.01 / \mathrm{s}$ @ 7m
Power Phase	Single
Weight	6.7 kg

DUAL V6

The Dual $V 6$ is an upgrade to the standard Dual V_{3} where higher discharge heads are required. Typically, for double and triple depth basements or where long discharge runs are required resulting in higher than normal pipe work losses. The Dual V6 is suitable for basements that require a head height greater then the V4. The Dual V6 can pump $12 \mathrm{~m}^{2}$ of surface area in addition to ground water.

The Dual V6 has been specifically designed for below ground applications. The chamber is manufactured from HDPE and is able to withstand hydrostatic forces encountered in applications with high water tables.

The pump station is delivered as a complete package including chamber, all internal pipework and two powerful V6 pumps. It is designed to be installed by contractors with competent building, plumbing and electrical skills.

PUMP STATION TECHNICAL DATA

DMS Code	DMS-079
Chamber Material	High Density Polyethylene
Volume Below Inlets	137 L
Total Volume	273 L
Fixed Inlets	$3 \times 110 / 160 \mathrm{~mm}$
Cable Duct Size	50 mm
Discharge Connection	$2^{\prime \prime} / 50 \mathrm{~mm}$ BSP Class C
Discharge Pipework	$2^{\prime \prime} / 50 \mathrm{~mm}$ BSP Class C
Internal Pipework	1.25 " / 32mm BSP Class C
Cable Duct Pipework	$2^{\prime \prime} / 50 \mathrm{~mm}$ White Waste Pipe

The Dual V6 is simple to install, the chamber sits on a concrete base, inlets in the form of perimeter channel or modular 110 mm system are connected into the chamber, a 32 mm pipe discharge connects to the gravity drain and a 50 mm cable duct to bring electrics and control cabling from the chamber into a dry environment. The chamber is filled with water to prevent buoyancy and is surrounded with concrete. A simple rule of thumb is the top of the chamber should be level with the structural slab or no deeper than 500 mm from the final finishes.

The installation is to be topped off with a double sealed cover supplied by the contractor to tie in with the general floor finish. Remember this product need to be accessed for service so care should be taken with its location.

For full installation instructions, see 'Delta Dual V4/V6 Installation Instructions' on our website.

RECOMMENDATIONS

AlertMaxx2 (DMS-298)
Hi-PowerMaxx (DMS-364)

SPECIFICATION

NBS specification R18 (clause 310) Pumping Stations \& Pressure Pipelines.

DUAL V4 / V6 - DMS-217 / 079

PUMP DATA	
Pump Model	V6
Voltage	230 V
KW Rating P1 / P2	$1.05 / 0.50 \mathrm{~kW}$
Full Load Current	4.9 A
Fuse Spur Rating	13 A Non-switched
Typical Duty	$2.0 \mathrm{l} / \mathrm{s}$ @ 9m
Power Phase	Single
Weight	6.9 kg

800 SERIES GROUND \& SURFACE WATER STATIONS

The 800 series ground \& surface water pump stations are available in depths from $800 \mathrm{~mm}-2000 \mathrm{~mm}$. Applications include collecting ground water from a Type C cavity membrane system or surface water from roofs and patios subject to selection criteria.

This product is specifically designed for below ground applications where hydrostatic water pressure may be present. However, they should be surrounded with concrete to prevent movement. A manhole cover is not supplied as these are generally site specific and installed in the final finish. However, if required the chamber will accept a standard $450 \mathrm{~mm} \times 600 \mathrm{~mm}$ cover and frame. A kit is provided so inlets can be easily drilled and sealed on site in the positions highlighted in blue, making this product very simple to install.

The 800 series pump chambers are compatible with a range of free standing and guide rail mounted pumps.

PUMP STATION TECHNICAL DATA

Chamber Model	800 Series
Chamber Material	High Density Polyethylene
Available Depths	$800 \mathrm{~mm}, 1000 \mathrm{~mm}, 1300 \mathrm{~mm}, 1500 \mathrm{~mm}$, $1800 \mathrm{~mm}, 2000 \mathrm{~mm}$
Available Pumps	V3, V4, V6
Inlets	$5 \times 110 \mathrm{~mm}$ grommets (supplied loose)
Cable Duct \& Vent Size	50 mm
Discharge Connection	BSP Class C
Cable Duct Pipework	$2 " / 50 \mathrm{~mm}$ White Waste Pipe
Vent Pipework	$2 " / 50 \mathrm{~mm}$ White Waste Pipe

INLETS

Inlets can be cut on site using the inlet kit provided with the chamber. The sections highlighted in blue on the drawings below show the areas suitable for drilling inlets.

TYPICAL APPLICATION

Ground Water
Surface Water

$V_{3}, V_{4}, ~ V 6$

Model	P1 kW	P2 kIW	$\ln A$	Part No.	Weight Kg
V3	0.43	0.18	1.9	116	5.64
V4	0.75	0.36	4.0	216	7.17
V6	1.05	0.50	4.9	084	7.40

1000 SERIES GROUND \& SURFACE WATER STATIONS

The 1000 series ground \& surface water pump stations are available in depths from $1250 \mathrm{~mm}-3000 \mathrm{~mm}$. Applications include collecting ground water from a Type C cavity membrane system and larger surface water applications from roofs and patios subject to selection criteria.

This product is specifically designed for below ground applications where hydrostatic water pressure may be present. However, they should be surrounded with concrete to prevent movement. The chamber will accept a standard $750 \mathrm{~mm} \times 600 \mathrm{~mm}$ cover and frame to suit floor build. A kit is provided so inlets can be easily drilled and sealed on site in the positions highlighted in blue, making this product very simple to install.

The 1000 series pump chambers are compatible with a range guide rail mounted pumps.

PUMP STATION TECHNICAL DATA

Chamber Model	1000 Series
Chamber Material	High Density Polyethylene
Available Depths	$1250 \mathrm{~mm}, 1500 \mathrm{~mm}, 1750 \mathrm{~mm}, 2000 \mathrm{~mm}$, $2250 \mathrm{~mm}, 2500 \mathrm{~mm}, 2750 \mathrm{~mm}, 3000 \mathrm{~mm}$
Available Pumps	2500 Series, D10 Series
Inlets	$5 \times 110 \mathrm{~mm}$ grommets (supplied loose)
Cable Duct \& Vent Size	50 mm
Discharge Connection	BSP Class C
Cable Duct Pipework	$2 " / 50 \mathrm{~mm}$ White Waste Pipe
Vent Pipework	$2^{\prime \prime} / 50 \mathrm{~mm}$ White Waste Pipe

2500 SERIES

50Hz - 1 ~ 230V Discharge 2" BSP Female					
Model	P1 kW	P2 KW	$\ln \mathrm{A}$	Part No.	Weight Kg
2500SA	1.00	0.55	5.0	Call	22
612SA	0.75	0.36	6.0	114	22
2502SA	1.05	0.50	8.2	PU-006	22
2503SA	1.90	1.10	8.2	PU-008	22
2500SM	1.00	0.55	5.0	Call	22
612SM	1.25	0.75	6.0	PU-005	22
2502SM	1.80	1.10	8.2	PU-007	22
2503SM	1.80	1.10	8.2	PU-009	22
$50 \mathrm{~Hz}-3 \sim 400 \mathrm{~V}$ Discharge 2" BSP Female					
2500TM	0.90	0.55	2.3	Call	22
612 TM	1.10	0.75	2.8	Call	22
2502TM	1.50	1.10	3.0	Call	22
2503TM	2.05	1.50	3.5	Call	22

D10 SERIES

$50 \mathrm{~Hz}-1$ ~ 230V Discharge 2" BSP Female					
Model	P1 kW	P2 kIW	$\ln \mathrm{A}$	Part No.	Weight Kg
D10SA	1.14	0.75	5.84	120	13.4
D10SM	1.14	0.75	5.84	PU-101	13.4

FOUL WATER PUMP STATIONS

FOUL WATER

A range of pump stations designed to collect foul water from a small utility room to large commercial projects, such as theatres, blocks of flats and major building upgrades where gravity discharge is not possible.

Our range of products have been designed specifically for these application and brings the technology of waterproofing and discharging water from properties under one responsibility, fully integrated and co-ordinated.

CALCULATING FOUL WATER STORAGE VOLUMES

NOTE

- The inlet drain should not be submerged otherwise there is a risk that the solid waste would cause a blockage.

EMERGENCY STORAGE

Where foul water drainage from a building is to be pumped, the effluent receiving chamber should be sized to contain 24 hour inflow to allow for disruption in service. The minimum daily discharge of foul drainage should be taken as 150 litres per head per day for domestic use. For other types of building, the capacity of the receiving chamber should be based on the calculated daily demand of the water intake for the building. Where only a proportion of the foul sewage is to be pumped, then the capacity should be based pro-rata. In all pump systems the controls should be so arranged to optimise pump operation.

Example : 6 bedroom house to be 'pumped' $=2$ people in the master bedroom, 1 in each of the remaining = 7 x 150L = 1050L
It is considered bad practice to pump facilities from ground level and above if they can be designed to be discharged by gravity.
It may not be necessary to allow for storage capacity on a pro-rata basis for basement application where alternative gravity facilities are available in accordance with BS6465.

FLOW RATES FROM	
DWELLINGS	
Number of dwellings	Flow rate (litres/sec)
1	2.5
5	3.5
10	4.1
15	4.6
20	5.1
25	5.4
30	5.8

ASSESSING FOUL SUMP FLOW RATE

The flow rate of a foul pump should equal or exceed the design inflow of the drainage system.
For typical dwellings, where there is no information about the sanitary appliances, it is acceptable to use the information from the table opposite. For non-typical dwellings or where the sanitary appliances are known, the Delta Wastewater Design Flow Calculator can be used. For buildings other than dwellings, assistance from a Delta Consultant should be sought.

VENTILATION OF FOUL SUMPS

The purpose of sump ventilation is to;
a) allow foul gas to escape safely.
b) prevent the pump from
overheating.
c) allow the sump to fill higher than normal in an emergency situation.
The best situation is to provide a 50 mm vent pipe connected directly to the sump at high level using the connection provided by the manufacturer.
In some situations it is acceptable to ventilate the sump via the drainage system.
The use of an air admittance valve is not acceptable.

High level vent terminal serving external pump station
(not less than 2 m high)

FOUL V3

A packaged pump station designed to collect foul water from basements and ground floor extensions where other facilities in the property discharge via gravity. A typical application would be the collection and discharge of foul water from a basement fitted with a bathroom and a utility room. This pump station is not designed to collect ground water from a cavity membrane system (see Dual V3 Sump). For kitchen applications, we recommend fitting a grease trap prior to the pump station.

The Foul V_{3} pump station has been specifically designed for below ground applications. The chamber is manufactured from virgin tank grade HDPE and is able to withstand hydrostatic forces encountered in applications with high water tables.

The pump station is delivered as a complete package with all internal pipework and a D10SA foul vortex pump. It is designed to be installed by contractors with competent building, plumbing and electrical skills.

PUMP STATION TECHNICAL DATA

DMS Code	DMS-165-1
Chamber Material	High Density Polyethylene
Volume Below Inlets	137 L
Total Volume	273 L
Fixed Inlets	$3 \times 110 / 160 \mathrm{~mm}$
Cable Duct \& Vent Size	50 mm
Discharge Connection	$2^{\prime \prime} / 50 \mathrm{~mm}$ BSP Class C
Discharge Pipework	$2^{\prime \prime} / 50 \mathrm{~mm}$ BSP Class C
Internal Pipework	$2^{\prime \prime} / 50 \mathrm{~mm}$ BSP Class C
Cable Duct Pipework	$2^{\prime \prime} / 50 \mathrm{~mm}$ White Waste Pipe
Vent Pipework	$2^{\prime \prime} / 50 \mathrm{~mm}$ White Waste Pipe

The Foul V_{3} is simple to install, the chamber is sited on a concrete base, inlets in the form of 110 mm pipework are connected into the chamber, a 50 mm discharge pipe connects to the gravity drain and a 50 mm cable duct to bring electrics and control cabling from the chamber into a dry environment. The chamber is vented via a 50 mm duct to the same standard as a traditional SVP. An air admittance or 'durgo' type valve should not be used. The chamber is filled with water to prevent buoyancy and is surrounded with concrete. A simple rule of thumb is the top of the chamber should be level with the structural slab or no deeper than 500 mm from the final finishes.

The whole lot is topped off with a double sealed cover supplied by the contractor to tie in with the general floor finish. Remember this product need to be accessed for service so care should be taken with its location.

For full installation instructions see 'Delta Foul V3 Installation Instructions' on our website.

RECOMMENDATIONS

AlertMaxx2 (DMS-299)
Hi-PowerMaxx (DMS-364)

SPECIFICATION

NBS specification R18 (clause 310) Pumping Stations \& Pressure Pipelines.

FOUL V3 - DMS-165-1

PUMP DATA	
Pump Model	D10SA
Voltage	230 V
KW Rating P1 / P2	$1.14 / 0.75 \mathrm{~kW}$
Full Load Current	5.84 A
Fuse Spur Rating	13 A Non-switched
Typical Duty	$4.0 \mathrm{l} / \mathrm{s}$ @ 6.5 m
Power Phase	Single
Weight	13.4 kg

800 SERIES FOUL WATER STATIONS

The 800 series foul water pump stations are available in depths from 800 mm 2000 mm . Applications include collecting foul and grey water from WC's, wash hand basins, showers, sinks and dishwashers subject to selection criteria, typically for larger self contained basements or where inverts are low due to site conditions. When the 800 series is collecting grey water from a kitchen, we recommend fitting a grease trap prior to the chamber to optimize the reliability of the pump station.

This product is specifically designed for below ground applications where hydrostatic water pressure may be present. However, they should be surrounded with concrete to prevent movement. A manhole cover is not supplied as these are generally site specific and installed in the final finish. However, if required the chamber will accept a standard $450 \mathrm{~mm} \times 600 \mathrm{~mm}$ cover and frame.

The 800 series pump chambers are compatible with a range of free standing and guide rail mounted pumps.

PUMP STATION TECHNICAL DATA

Chamber Model	800 Series
Chamber Material	High Density Polyethylene
Available Depths	$800 \mathrm{~mm}, 1000 \mathrm{~mm}, 1300 \mathrm{~mm}, 1500 \mathrm{~mm}$, $1800 \mathrm{~mm}, 2000 \mathrm{~mm}$
Available Pumps	2500 Series, 2600 Series, D10 Series
Inlets	$5 \times 110 \mathrm{~mm}$ grommets (supplied loose)
Cable Duct \& Vent Size	50 mm
Discharge Connection	BSP Class C
Cable Duct Pipework	$2^{\prime \prime} / 50 \mathrm{~mm}$ White Waste Pipe
Vent Pipework	$2^{\prime \prime} / 50 \mathrm{~mm}$ White Waste Pipe

INLETS

Inlets can be cut on site using the inlet kit provided with the chamber. The sections highlighted in blue on the drawings below show the areas suitable for drilling inlets.

2500 SERIES

50 Hz - 1 ~ 230V Discharge 2" BSP Female					
Model	P1 kW	P2 kW	$\ln \mathrm{A}$	Part No.	Weight Kg
2500SA	1.00	0.55	5.0	Call	22
612SA	0.75	0.36	6.0	DMS-114	22
2502SA	1.05	0.50	8.2	PU-006	22
2503SA	1.90	1.10	8.2	PU-008	22
2500SM	1.00	0.55	5.0	Call	22
612SM	1.25	0.75	6.0	PU-005	22
2502SM	1.80	1.10	8.2	PU-007	22
2503SM	1.80	1.10	8.2	PU-009	22
50 Hz - 3 ~ 400V Discharge 2" BSP Female					
2500TM	0.90	0.55	2.3	Call	22
612TM	1.10	0.75	2.8	Call	22
2502TM	1.50	1.10	3.0	Call	22
2503TM	2.05	1.50	3.5	Call	22

2600 SERIES

50 Hz - 1 ~ 230V Discharge 2.50" BSP Female					
Model	P1 kW	P2 kW	$\ln \mathrm{A}$	Part No.	Weight Kg
2601SA	1.25	0.75	6.0	PU-010	25
2602SA	1.80	1.10	8.2	PU-012	25
2603SA	1.80	1.10	8.2	PU-014	25
2601SM	1.25	0.75	6.0	PU-011	25
2602SM	1.80	1.10	8.2	PU-013	25
2603SM	1.80	1.10	8.2	PU-015	25
50 Hz - $3 \sim 400 \mathrm{~V}$ Discharge 2.50" BSP Female					
2601TM	1.10	0.75	2.8	Call	25
2602TM	1.50	1.10	3.0	Call	25
2603TM	2.05	1.50	3.5	Call	25

D10 SERIES

50 Hz -1 ~ 230V Discharge 2" BSP Female					
Model	P1 kW	P2 kW	$\ln \mathrm{A}$	Part No.	Weight Kg
D10SA	1.14	0.75	5.84	DMS-120	13.4
D10SM	1.14	0.75	5.84	PU-101	13.4

1000 SERIES FOUL WATER STATIONS

The 1000 series foul water pump stations are available in depths from 1250 mm 3000 mm . Applications include collecting foul and grey water from WC's, wash hand basins, showers, sinks and dishwashers subject to selection criteria, typically for larger basements or where inverts are low due to site conditions. When the 1000 series is collecting grey water from a kitchen, we recommend fitting a grease trap prior to the chamber to optimize the reliability of the pump station.

This product is specifically designed for below ground applications where hydrostatic water pressure may be present. However, they should be surrounded with concrete to prevent movement. A manhole cover is not supplied as these are generally site specific and installed in the final finish. However, if required the chamber will accept a standard $450 \mathrm{~mm} \times 600 \mathrm{~mm}$ cover and frame.

The 1000 series pump chambers are compatible with a range of free standing and guide rail mounted pumps.

PUMP STATION TECHNICAL DATA

Chamber Model	1000 Series				
Chamber Material	High Density Polyethylene				
Available Depths	$1250 \mathrm{~mm}, 1500 \mathrm{~mm}, 1750 \mathrm{~mm}, 2000 \mathrm{~mm}$, $2250 \mathrm{~mm}, 2500 \mathrm{~mm}, 2750 \mathrm{~mm}, 3000 \mathrm{~mm}$				
Available Pumps	2500 Series, 2600 Series, D10 Series	$	$	Inlets	$5 \times 110 \mathrm{~mm}$ grommets (supplied loose)
:---	:---				
Cable Duct \& Vent Size	50 mm				
Discharge Connection	BSP Class C				
Cable Duct Pipework	$2^{\prime \prime} / 50 \mathrm{~mm}$ White Waste Pipe				
Vent Pipework	$2^{\prime \prime} / 50 \mathrm{~mm}$ White Waste Pipe				

INLETS

Inlets can be cut on site using the inlet kit provided with the chamber. The sections highlighted in blue on the drawings below show the areas suitable for drilling inlets.

2500 SERIES

50Hz-1 ~ 230V Discharge 2" BSP Female					
Model	P1 kW	P2 kIW	$\ln \mathrm{A}$	Part No.	Weight Kg
2500SA	1.00	0.55	5.0	Call	22
612SA	0.75	0.36	6.0	DMS-114	22
2502SA	1.05	0.50	8.2	PU-006	22
2503SA	1.90	1.10	8.2	PU-008	22
2500SM	1.00	0.55	5.0	Call	22
612SM	1.25	0.75	6.0	PU-005	22
2502SM	1.80	1.10	8.2	PU-007	22
2503SM	1.80	1.10	8.2	PU-009	22
50 Hz - $3 \sim 400 \mathrm{~V}$ Discharge 2" BSP Female					
2500TM	0.90	0.55	2.3	Call	22
612TM	1.10	0.75	2.8	Call	22
2502TM	1.50	1.10	3.0	Call	22
2503TM	2.05	1.50	3.5	Call	22

2600 SERIES

50 Hz -1 ~ 230V Discharge 2.50" BSP Female					
Model	P1 kW	P2 kW	$\ln \mathrm{A}$	Part No.	Weight Kg
2601SA	1.25	0.75	6.0	PU-010	25
2602SA	1.80	1.10	8.2	PU-012	25
2603SA	1.80	1.10	8.2	PU-014	25
2601SM	1.25	0.75	6.0	PU-011	25
2602SM	1.80	1.10	8.2	PU-013	25
2603SM	1.80	1.10	8.2	PU-015	25
$50 \mathrm{~Hz}-3 \sim 400 \mathrm{~V}$ Discharge 2.50" BSP Female					
2601TM	1.10	0.75	2.8	Call	25
2602TM	1.50	1.10	3.0	Call	25
2603TM	2.05	1.50	3.5	Call	25

D10 SERIES

50 Hz -1 ~ 230V Discharge 2" BSP Female					
Model	P1 kW	P2 kW	$\ln \mathrm{A}$	Part No.	Weight Kg
D10SA	1.14	0.75	5.84	DMS-120	13.4
D10SM	1.14	0.75	5.84	PU-101	13.4

ALERTMAXX2

The AlertMaxx2 is an intelligent high level alarm, designed to alert homeowners when the water level in their pump station becomes too high. AlertMaxx2 can be a stand alone high level alarm offering internal data logging, energy monitoring and a service reminder or it can be connected via Wi-Fi to the SideWinder Technology monitoring system (www.sidewindertech.co.uk). To enable the Wi-Fi, the AlertMaxx2 will have to be connected by one of the Certified SideWinder installers.

The AlertMaxx2 can be connected to a PowerMaxx or Hi-PowerMaxx. When connected, the AlertMaxx2 receives important data about the battery backups status and condition. The battery backup will also extend the operating time of the AlertMaxx2 during a power outage. All this data is transmitted via Wi-Fi (if connected) to the SideWinder operations centre where it is available $24 / 7$ for intelligent analysis.

Offering a volt free contact, the AlertMaxx2 allows connection of external devices such as an alarm or beacon with a maximum load of 0.5 A and voltage up to 30 V . The VFR can also be connected to any BMS system if required for high level alarm only,

KEY FEATURES

6 V battery backup.
Intelligent logging.
100 db sounder.
Digital display.
Software controlled.
Local energy monitoring.
Wi-Fi enabled.
Predictive capabilities.
24 month component guarantee. sending a continuous signal.

LOOKING AFTER PROPERTIES WITH OUR VIRTUAL ENGINEER...

INTELLIGENT LOGGING

Data from the property is uploaded and analysed by SideWinder Tech every 15 minutes.

FLEXIBLITY

Can be connected to almost any single or dual pump system, both existing \& new.

ENERGY MONTTORING

Provides local real time energy monitoring to show kWh usage per day.

WI-FIENABLED

Simple connection to the properties Wi-Fi network made by an approved SideWinder Tech installer.

PREDICTIVE CAPABILITIES

Tells you before an event has happened! Predictive intelligence at it's best.

INTERNAL BATTERY BACKUP

Alarms remain operational even when there is a power outage or tripped electrical circuit.

100DB SOUNDER

As loud as a chainsaw, the alarm will easily be heard throughout the entire property.

MAXX BATTERY BACKUPS

Compatible with all Delta's range of battery backups. Battery status info uploaded to SideWinder Tech.

DIGITAL DISPLAY

Shows current status and simple to understand fault codes.

POWERMAXX

PowerMaxx is specifically designed for pump applications. It can run $2 \times \mathrm{V}_{3}$ (not simultaneously) ground water pumps without mains power for up to 10 days depending on the number of cycles/day and is virtually inaudible. 1 or 2 pumps are directly fed through the PowerMaxx. If a power failure occurs, the pump/s automatically take power from the PowerMaxx which will have been fully charged during mains operation.

The PowerMaxx will automatically recharge when mains power returns. Installation is simple, The PowerMaxx is free standing and can be installed in any dry ventilated area. As this unit is fitted in the power line, no additional electrical spurs are required. The PowerMaxx is part of the MaxxConnect family and can operate as a stand alone unit or can be used in conjunction with AlertMaxx2. It can also be used as a direct replacement for previous versions.

TECHNICAL DATA

DMS Code	DMS-280
Size (without cable glands)	$155 \mathrm{~mm} \times 425 \mathrm{~mm} \times 300 \mathrm{~mm}$
Weight (without battery installed)	6.5 kg
Weight (with battery installed)	19.5 kg
Mains supply	$200-250 \mathrm{~V} \mathrm{AC} \mathrm{(50Hz)}$
Internal battery	$24 \mathrm{~V}-1 \times 22 \mathrm{Ah}$ Lead Acid
Power (standby)	$<3 \mathrm{~W}$
Power (charging)	55 W
Peak Power Handling	600 W P1
Visual display	Red, Blue, Green LED
Operating temperature	$5-35^{\circ} \mathrm{C}$
Approximate installation time	1 hour
Warranty	2 years

TOP TIP

Want longer run and standby times? A PowerMaxx+ is available which has been designed to triple the available run and standby statistics of the PowerMaxx

HI-POWERMAXX

Hi-PowerMaxx is specifically designed for pump applications. It provides battery backup for larger pumps such as the V4, V6 \& D10SA, sits in standby mode for up to 50 days and is virtually inaudible. If a power failure occurs, the pump/s automatically take power from the Hi-PowerMaxx which will have been fully charged during mains operation.

The Hi-PowerMaxx will automatically recharge when mains power returns. Installation is simple, the Hi-PowerMaxx is free standing and can be installed in any dry ventilated area. As this unit is fitted in series between the spur and the pump, no additional electrical spurs are required. The Hi-PowerMaxx is part of the MaxxConnect family and can operate as a stand alone unit or can be used in conjunction with the AlertMaxx2. It can also be used as a direct replacement for previous versions.

TECHNICAL DATA	
DMS Code	DMS-364
Size (without cable glands)	$475 \mathrm{~mm} \times 425 \mathrm{~mm} \times 300 \mathrm{~mm}$
Weight (without battery installed)	15.5 kg
Weight (with battery installed)	80.5 kg
Mains supply	$200-250 \mathrm{~V} \mathrm{AC} \mathrm{(50Hz)}$
Internal battery	$24 \mathrm{~V}-5 \times 22 \mathrm{Ah}$ Lead Acid Total = 110Ah
Power (standby)	$<3 \mathrm{~W}$
Power (charging)	55 W
Peak Power Handling	2000 W P1
Visual display	Red, Blue, Green LED
Operating temperature	$5-35^{\circ} \mathrm{C}$
Approximate installation time	1.5 hours
Warranty	2 years

KEY FEATURES

Designed for $2 \times$ V4/V6 ground water pumps or $1 \times$ D10SA foul water pump.
Operates in standby mode during a power outage for at least 50 days.
24 month component guarantee.

TOP TIP

The Hi-PowerMaxx can be used to backup manual pumps that run through a DUTY/STANDBY control panel (2000W max.). Please request a wiring diagram before attempting installation.

ANCILLARY PRODUCTS \& MAINTENANCE

PIPE \& FITTINGS

We can supply a range of pipe and pipe fittings from $1.25^{\prime \prime}$ up to $2.5^{\prime \prime}$. Our pipe and fittings are all high pressure PVC-U Class C with a pressure rating from 9 bar up to 15 bar depending on the type. We also stock high pressure solvent weld glue in 500 ml pots.

\rightarrow

\square

PUMP \& CHAMBER SPARES

We can supply a range of pump and sump spares. This includes float switches, replacement pump claws, cable harnesses, sounders \& beacons and pipework assemblies. Please contact our technical team for more information.

packagedpumpsystems

'FREE LIME' RISK

The British Standard for waterproofing BS 8102:2009 recognises the requirement of a Type C Waterproofing System or Cavity Drain Membrane System to be maintainable.

The use of inspection ports within a Basement Waterproofing Design is key for maintenance or the ability to carry out periodic inspection. When new concrete is introduced to structures, there is a risk of excess free lime leaching out during the curing process in the form of calcium hydroxide, this free lime, if untreated, can enter the Cavity Drainage System which can impede the flow of water and cause sump pump failure. We recommend during a Cavity Drain System installation that a silicification pre-treatment of concrete be used to reduce the risk of free lime build up. Attention should be observed to dry pack joints often formed between the existing foundation and new concrete underpin, these are classic areas for free lime to infiltrate the structure and should be 'locked' down

KOSTER POLYSIL-TG 500

An 'anti lime' coating product specially blended with Polymers and silicates which is applied by brush or spray application. Applying Koster Polysil-TG 500 will not only reduce the amount of free lime leaching into the Cavity Drainage System but will also improve the water resistance of the basement structure by absorption into the structure and locking in the free lime.

