
FINE & FAST STEERING MIRRORS

COMPACT - DYNAMIC - PRECISE

HERITAGE IN AEROSPACE & DEFENCE

CEDRAT TECHNOLOGIES (CTEC) piezo mechanisms and their associated electronics are widely used in Air, Space & Defence (ASD) applications. They can be found in optical instruments, cameras, telescopes and electro optic systems embedded on airplanes, helicopters, unmanned aerial vehicles (UAV), satellites, spacecrafts, etc... Their excellent dynamic performance, reliability and compactness make them ideal for the following mechatronic functions & applications:

- Image resolution enhancement (micro-scanning, pixel shift, dithering)
- Image & line of sight stabilisation
- Field of view increase
- Fillet compensation
- Fine pointing ahead
- Tracking

The DTT is the most common mechanism that constitutes a steering mirror, it means Double Tip Tilt i.e. tilt on two perpendicular axis. In the table below you will see a recap of the products realizing the steering function

	UNIT	PHARAO DTT	DTT15XS-SG	DTT35XS-SG- SV	DTT35XS-SV- SIC	DTT60S-SG	DTT40SM-SG
Stroke Rx & Ry (+/-)	mrad	1.5	1.1	3	2.5	2.1 & 1.5	1
Mirror mass	g	1	10	25	5	2.9	100
Mirror dimensions	mm	ø 4 x 3	30 × 30 × 4.85	ø 50 × 6	ø 31 × 6	ø 27 × 5	ø 80 × 8
Loaded resonance frequency	Hz	3200	2600	860	1500	2000	1100
Capacitance per axis	μF	0.5	0.5	0.5	0.5	3	3
Page		page 4	page 5	page 6	page 7	page 8	page 9

	UNIT	DTT60SM- SG	DTT10M- SG-SV	DTT95ML- SG-SV	DTT120ML- PTW	DTT300ML- SG-SV	CRYOGENIC DTT10H	MAGNETIC FSM62
Stroke Rx & Ry (+/-)	mrad	5	0.25	0.56	0.75	2.5	0.1	34
Mirror mass	g	16	30.25		730	900	72	/
Mirror dimensions	mm	ø 40 x 5	ø 50 × 7	>130	220 × 96 × 23	200 × 140 × 36	ø 60 × 6	ø31
Loaded resonance frequency	Hz	1272	5100	2100	840	320	3300	93
Capacitance per axis	μF	3	1	40	40	40	/	/
Page		page 10	page 11	page 12	page 13	page 14	page 15	page 16

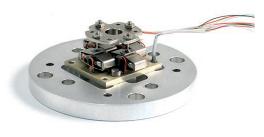


Fig. 1 : DTT35XS-space

1. PHARAO DOUBLE TIP TILT (DTT)

1.1. DESCRIPTION

The Double Tip Tilt mechanism DTT35 XS-space delivered to SODERN (AIRBUS) is a very light piezoelectric mechanism (25 grams) designed according to space rules for the PHARAO ACES mission. The mechanism uses Strain Gauges (SG) as positioning sensor and allows to reach a 1:4000 stability (1 µrad rms). It controls the incidence of a laser beam flux towards an optical fiber

1.2. APPLICATION

Space, fine pointing

1.3. ENVIRONMENTAL CONDITIONS

The DTT35 XS-space has followed a space qualification program according to ECSS standards (European Space Agency Standards)

- Operating temperature in vacuum: -20°C/+75°C
- Random vibration: 41 Grms
- Lifetime: 2 e8 cycles full stroke

2. DTT15XS-SG

2.1. DESCRIPTION

Compact FSM with its controller box for embedded electro optic systems

2.2. APPLICATION

Image stabilisation and micro-scan combined in a single unit (5th and 6th axis of gyro stabilised platform).

2.3. ENVIRONMENTAL CONDITIONS

- Operating temperature: -40°C/+70°C
- Storage temperature: -55°C/+85°C
- High altitude operation: 55 000 ft
- High altitude storage: 70 000 ft
- Half sine Shock level : >20 G
- Vibration level (CBO): 0.025 g²/Hz up to 1 kHz

PARAMETER	UNIT	PHARAO DOUBLE TIP TILT (DTT)
Angular stroke Rx & Ry +/-	mrad	1.5
Dimensions	mm	ø 30×22
Total mass	g	25
Mirror mass	g	1
Mirror dimensions	mm	ø 40 x 5
Loaded resonance frequency	Hz	3200
Position stability	µrad	<1
Capacitance per axis	μF	0.5

Table a: Performances of Pharao double tip tilt (DTT)

PARAMETER	UNIT	DTT15XS-SG
Angular stroke Rx & Ry +/-	mrad	1.1
Dimensions	mm	40×40×28
Total mass	g	136
Mirror mass	g	10
Mirror dimensions	mm	30×30×4.85
Loaded resonance frequency	Hz	2600
Resolution	nrad	50
Settling time within 5%	ms	1
Position stability	µrad	<25
Capacitance per axis	μF	0.5
Power consumption with CCBu20 50 Hz @ +/- 700 µrad	W	9
Power consumption with CCBu20 480 Hz @ +/- 200 µrad	W	13.5
Controller	Driven b	by custom embedded CTEC electronic and controller board call CCBu20-PROX
Embedded electronics board	SG cond	litioning, EEPROM memory, temperature monitoring and compensation
Tabla ba Davíano	6	

Fig. 2 : DTT15XS-SG

Fig. 3 : Batch of DTT15XS-SG with mirror

Fig. 4 : DTT15XS-SG with CCBu20 controller

3. DTT35XS-SG-SV

3.1. DESCRIPTION

FSM for 50 mm diameter mirror with CCBu20 controller box

3.2. APPLICATION

Fig. 5 : DTT35XS-SG-SV with CCBu20 electronics

Line of sight stabilisation

3.3. ENVIRONMENTAL CONDITIONS

- **Operating temperature range:** -40°C to +70°C
- Shocks: 30 G

4. DTT35XS-SV-SIC

4.1. DESCRIPTION

FSM for 31 mm diameter mirror with CCBu20 controller box

4.2. APPLICATION

Line of sight stabilisation, Laser Pointing Ahead

This version of DTT35XS is especially designed for vacuum space application

4.3. ENVIRONMENTAL CONDITIONS

- **Operating temperature range:** -40°C to +70°C
- **Shocks :** 30 G
- Vacuum compatible

PARAMETER	UNIT	DTT35XS-SG-SV
Angular stroke Rx & Ry +/-	mrad	3
Dimensions	mm	ø 48×27
Total mass	g	164
Mirror mass	g	25
Mirror dimensions	mm	ø 50×6
Loaded resonance frequency	Hz	860
Resolution	nrad	< 500
Settling time within 5%	ms	<2
Linearity	%	0.2
Control bandwidth	Hz	200
Capacitance per axis	μF	0.5
Controller		CTEC standard CCBu20
Embedded electronics board	SG cond	ditioning, EEPROM memory, temperature monitoring and compensation

PARAMETER	UNIT	DTT35XS-SV-SIC
Angular stroke Rx & Ry +/-	mrad	2.5
Dimensions	mm	ø 48×27
Total mass	g	164
Mirror mass	g	5
Mirror dimensions	mm	ø 31×6
Loaded resonance frequency	Hz	1500
Resolution	nrad	< 500
Settling time within 5%	ms	5 at full stroke
Linearity	%	0.2
Control bandwidth	Hz	1000
Capacitance per axis	μF	0.5
Controller		CTEC standard CCBu20

Table d : Performances of DTT35XS-SV-SiC

Table c : Performances of DTT35XS-SG-SV

7

Fig. 6 : DTT35XS-SV-SiC

Fig. 7 : BSM CAD model

5. DTT60S-SG FOR ATLID

5.1. DESCRIPTION

Thanks to the heritage from the PHARAO DTT, CTEC has developed the ATLID Beam Steering Mechanism (BSM) for SODERN (see publication). ATLID is a Lidar instrument for the EarthCARE mission. The BSM is a Tip-Tilt piezo mechanism based on 4 APAs including Strain Gauges. The requirements were particularly severe regarding the long term stability and the cleanliness. CTEC has successfully delivered the Flight Models in 2015

The BSA (Beam Steering Assembly), included in the emission path, aims at deviating a pulsed high energy UV laser beam to compensate the pointing misalignment between the emission and reception paths of ATLID. It requires a very high stability and high resolution

5.2. APPLICATION

Fig. 8 : Complete BSM mechanism

Space

5.3. ENVIRONMENTAL CONDITIONS

- Non magnetic
- Shock level: 100 G
- Random Vibration level: 15.5 Grms
- Quasi Static: 26 g
- Cleanliness:
 - Particular: 50 ppm
 - Molecular: 5.10 e-8 g/cm²

PARAMETER	UNIT	DTT60S-SG FOR ATLID
Stroke Rx +/-	mrad	2.1
Stroke Ry +/-	mrad	1.5
Dimensions	mm	63×62×40
Total mass	g	130
Mirror mass	g	2.9
Mirror dimensions	mm	ø 27×5
Loaded resonance frequency	Hz	2000
Resolution	nrad	400
Repeatability	µrad	70
Capacitance per axis	μF	3

Table e: Performances of DTT60S-SG for ATLID

6. DTT40SM-SG

6.1. DESCRIPTION

FSM for 80 mm diameter mirror

6.2. APPLICATION

High power laser, atmospheric disturbance compensation

6.3. ENVIRONMENTAL CONDITIONS

- CTEC commits on mirror flatness in operations
- Operation temperature: -10/+50°C
- Storage temperature: -20/+70°C
- Vibrations: random 4 Grms up to 500 Hz
- Shocks: 20 G/11 ms half sine

PARAMETER	UNIT	DTT40SM-SG
Angular stroke Rx & Ry +/-	mrad	1
Dimensions	mm	110×110×63
Total mass	g	1600
Mirror mass	g	100
Mirror dimensions	mm	ø80×8
Loaded resonance frequency	Hz	1100
Settling time within 5%	ms	2.6
Accuracy	µrad	<1
Linearity	%	<0.25
Rising time 90%	μs	780
Capacitance per axis	μF	3
	INVAF	R components to reduce the mechanism CTE and mismatch with the optical component

9

Fig. 9 : DTT40SM-SG

7. DTT60SM-SG

Fig. 10 : DTT60SM-SG

7.1. DESCRIPTION

The DTT60SM-SG is a piezo Tip Tilt Platform for Fast Steering Mirror (FSM) for electro-optics systems

7.2. APPLICATION

Line of sight stabilisation inside electro-optic systems

7.3. ENVIRONMENTAL CONDITIONS

• Operation temperature: --40°C/+70°C

8. DTT10M-SG-SV

8.1. DESCRIPTION

FSM for 50 mm diameter mirror with its controller rack

8.2. APPLICATION

High power Laser, atmospheric disturbance compensation

8.3. ENVIRONMENTAL CONDITIONS

- CTEC commits on mirror flatness in operations
- **Operation temperature:** -10°C/+50°C
- Storage temperature: -20°C/+70°C
- Vibrations: Random 4 Grms up to 500 Hz
- Shock: Half Sine 20 G 11 ms

PARAMETER	UNIT	DTT60SM-SG
Angular stroke Rx & Ry +/-	mrad	5
Dimensions	mm	ø 63x36x41
Total mass	g	284g
Mirror mass	g	16g
Mirror dimensions	mm	ø 40x5
Unloaded resonance frequency	Hz	1746
Loaded resonance frequency (Blocked- free with 26mm x 6mm BK7 mirror)	Hz	1 272
Loaded resonance frequency (Blocked- free with 40mm x 5mm BK7 mirror)	Hz	806
Capacitance per axis	μF	3
Resolution	µrad	1
Settling time	ms	2
Controller	L	A75B amplifier into a desktop rack RK42F-3U

PARAMETER	UNIT	DTT10M-SG-SV	
Angular stroke Rx & Ry +/-	mrad	0.25	
Dimensions	mm	65×65×65	
Total mass	g	860	
Mirror mass	g	30.25	
Mirror dimensions	mm	ø50×7	
Mirror flatness		L/10 (632 nm) over CA 90 %	
Loaded resonance frequency	Hz	5100	
Settling time within 5%	ms	0.7	
Accuracy	µrad	<1	
Linearity	%	<0.25	
Control bandwidth	Hz	1000	
Capacitance per axis	μF	1	
	INVAR material to reduce the mechanism CTE and mismatch with the optical components		

Table g: Performances of DTT60SM-SG

Fig. 11 : Rack RK42F3U

Fig. 12 : DTT10M-SG-SV and electronic rack

Fig. 13 : DTT10M-SG-SV

9. DTT95ML-SG-SV

9.1. DESCRIPTION

FSM with 120 mm diameter SiC mirror

9.2. APPLICATION

Space, point-ahead mechanism for infrared telescope

9.3. ENVIRONMENTAL CONDITIONS

- SRS 800 G
- Random 8 Grms

10. DTT120ML-PTW FOR MEFISTO

10.1. DESCRIPTION

In the context of CNES future observation satellite and DGA funding, and in collaboration with CNES and SODERN, CTEC designed a large space mechanism that allows to tilt a 2 kg payload by 0.5 mrad in 2 ms with a tracking error of less than 1%, while the Loaded resonance frequency is in the 500 Hz range. The vibrations created by the payload are compensated by moving another mass in the opposite direction. It uses 8 APA120 ML with strain gauges

This project allowed CTEC to create software to compensate the vibrations with reduced additional masses

10.2. APPLICATION

The MEFISTO mechanism is dedicated to fillet compensation for telescopes

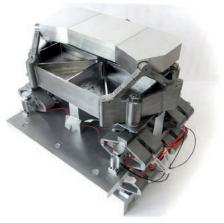

UNIT	DTT95ML-SG-SV	
mrad	0.56	
mm	127×127×128	
mm	>130	
Hz	2100	
Hz	700	
μF	40	
En	nbedded electronics board to secure the wires	
Driven with 0-80V reduced voltage		
	mm mm Hz Hz µF	

Table i : Performances of DTT95ML-SG-SV

PARAMETER	UNIT	DTT120ML-PTW FOR MEFISTO
Angular stroke Rx & Ry +/-	mrad	0.75
Dimensions	mm	279×250×293
Total mass	g	12 700
Mirror mass	g	730
Mirror dimensions	mm	220×96×23
Loaded resonance frequency	Hz	840
Speed		0.5 mrad in 2 ms
Maximum error	μm	2
Capacitance per axis	μF	40
		Capacitive sensors

Table j: Performances of DTT120ML-PTW for Mefisto

Fig. 14 : CAD view of DTT95ML-SG-SV

13

Fig. 15 : View of MEFISTO mechanism

Fig. 16 : CAD of MEFISTO mechanism

Fig. 17 : FSM with non-coated SiC mirror

11. DTT300ML-SG-SV

11.1. DESCRIPTION

FSM for SiC large aperture mirror with its controller rack

11.2. APPLICATION

High power laser, line of sight stabilisation for atmospheric disturbance compensation

11.3. ENVIRONMENTAL CONDITIONS

Fig. 18 : Customised controller

• -20°C to +55°C

12. CRYOGENIC DTT10H FOR ESA CFSM PROJECT

12.1. DESCRIPTION

For the ESA EChO mission, the use of a fine steering tip and tilt mechanism ensures the stability of the line of sight for a telescope operating in cryogenic conditions. The main efforts were focused on the management of thermo-mechanical behaviour and performances of the actuator over a wide temperature range. Its capabilities to sustain stresses due to thermal cycles between room and cryogenic temperatures have been demonstrated through the development and test of an Engineering Model

12.2. APPLICATION

Space, pointing

12.3. ENVIRONMENTAL CONDITIONS

- Cryogenic stability 30 K
- Non-magnetic mechanism
- Successful life time @30 K: 2.2 M cycles
- Successful vibration tests:
 - Shocks: 700 G
 - Random: 18 Grms

PARAMETER	UNIT	DTT300ML-SG-SV
Angular stroke Rx & Ry +/-	mrad	2.5
Dimensions	mm	145×145×100
Total mass	g	1800
Mirror mass	g	900
Mirror dimensions	mm	200×140×36
Loaded resonance frequency	Hz	320
Resolution	nrad	200
Accuracy	µrad	3
Accuracy	%	2
Control bandwidth	Hz	>100
Capacitance per axis	μF	40
Embedded electronics board	Embedded electronics board for Strain Gauges conditioning	

 PARAMETER

 Stroke @300 K +/ n

 Stroke @30 K +/ n

 Dimensions
 n

 Total mass
 n

 Mirror mass
 n

 Mirror dimensions
 n

 Loaded resonance frequency
 n

 Power consumption
 n

 Piston drift along qualification
 n

Table I: Performances of cryogenic DTT10H for ESA CFSM project

Table k : Performances of DTT300ML-SG-SV

Fig. 19 : DTT10H cryogenic mechanism

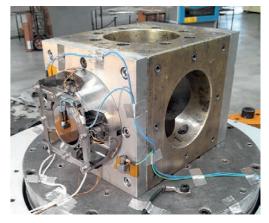


Fig. 20 : Shocks and vibrations test bench

UNIT	CRYOGENIC DTT10H FOR ESA CFSM PROJECT		
mRad	0.1		
mRad	0.03		
mm	ø 145×55		
g	1650		
g	72		
mm	ø 60×6		
Hz	3300		
nrad	0.13		
nWatt	2		
μm	<50		

17

13. MAGNETIC FAST STEERING MIRROR (M-FSM62)

Fig. 21 : Magnetic Fast Steering Mirror M-FSM62 (with Ø31 mm mirror)

13.1. DESCRIPTION

Magnetic FSM for optical pointing with larger motion than piezo FSM while keeping high resolution and large bandwidth.

The M-FSM62 mechanism volume contains the mirror, the actuators, the flexure bearings and the Eddy Current positioning Sensors (ECP).

High performance Moving Iron Control Actuator (MICATM) allows to perform the dynamic strokes with low Joule heating.

Frictionless flexure bearings allow to achieve both high resolution and infinite life time.

Dedicated electronics for sensing, driving and controlling are respectively the <u>ECS45</u> and MCSA480.

13.2. APPLICATION

Typical applications are Free Space Optic (FSO) communication links, applications, optical imaging..

PARAMETER	UNIT	MAGNETIC FAST STEERING MIRROR (M-FSM62)		
Angular strokes Rx & Ry +/-	mrad	34		
Mechanism volume	mm	Ø 62 × 56		
Standard SiC mirror size	mm	Ø 31		
Mirror full stroke open loop bandwidth	Hz	200		
(with heating)	Hz	93		
Resolution	µrad	20		
Power @20Hz	W	0.5		
See more detailed perfomances				

Table m : Performances of Magnetic Fast Steering Mirror (M-FSM62)

CEDRAT TECHNOLOGIES (CTEC) offers off-the-shelf mechatronics products including piezoelectric & magnetic actuators, motors, mechanisms, transducers and sensors with corresponding drivers & controllers. These mechatronics products are used for scientific and industrial applications requiring fonctions such as: micro and nano positioning, generation of vibrations, microscanning, fast & precise motion control, active control of vibrations, and energy harvesting

Most of the products are available in OEM versions for low cost and high volume industrial applications. CTEC also offers services including, design, R&D under contract and training

You can request our e-catalogue on cedrat-technologies.com/en/catalogue

CTEC is a SME located in Meylan, Inovallée, the French Innovation Valley near Grenoble. CTEC is recognised as a highly innovative company and has received several awards

CEDRAT TECHNOLOGIES 59 Chemin du Vieux Chêne - Inovallée 38246 Meylan Cedex

+33 (0)4 56 58 04 00 www.cedrat-technologies.com

