## : Fastclanp



PIPES \& VALVES


Fittings \& Technical Guide

## Introduction

The safe clamping system for circular hollow section tube
Access Technologies Limited was established in 1995 to manufacture access equipment for the Construction Industry. The
FastClamp brand followed as a natural progression four years later and has since grown to become one of the premier ranges of slip on tubular fittings available today.

FastClamp is a range of fittings manufactured from Malleable Iron to BS EN 1562 or Ductile Iron (where noted in the fittings description) to BS EN 1563 . FastClamp fittings are used to construct lightweight tubular steel structures and are manufactured to suit five different tube sizes.


## Application Guidelines

## Racking and general structures

Racking and general structures can be constructed using FastClamp fittings. Care must be taken to ensure that the tube size selected is adequate for the loads anticipated. To help with the selection of the correct tube, table 1 provides the uniformly distributed loads that can be supported between upright posts, assuming that the load is supported by two tubes. These loads are calculated based on the maximum bending moment for the tube.

Table 2 provides the load capacity for single upright posts with various unsupported lengths. These loads are based on the compression strength and buckling loads of the circular hollow section (CHS) tube.

NB. When designing structures care must be taken to ensure that the load on any one grub screw does not exceed 900kg.

For further help in using FastClamp please contact our sales office.

## Horizontal tubes load capacity

Uniformally distributed load in kg using two horizontal tubes

| Table 1 <br> Span <br> (m) | Tube \% |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 26.9 \mathrm{~mm} \\ \times 2.6 \end{gathered}$ | $\begin{gathered} 33.7 \mathrm{~mm} \\ \times 3.2 \\ \hline \end{gathered}$ | $\begin{gathered} 42.4 \mathrm{~mm} \\ \times 3.2 \\ \hline \end{gathered}$ | $\begin{gathered} 48.3 \mathrm{~mm} \\ \times 3.2 \end{gathered}$ | $\begin{gathered} 60.3 \mathrm{~mm} \\ \times 3.6 \\ \hline \end{gathered}$ |
| 0.5 | 540 | 1060 | 1750 | 2380 | 4000 |
| 0.6 | 435 | 850 | 1407 | 1870 | 3250 |
| 0.7 | 375 | 730 | 1207 | 1595 | 2760 |
| 0.8 | 330 | 645 | 1063 | 1385 | 2420 |
| 0.9 | 295 | 579 | 946 | 1230 | 2160 |
| 1.0 | 265 | 525 | 850 | 1110 | 1950 |
| 1.1 | 240 | 478 | 770 | 1013 | 1775 |
| 1.2 | 219 | 438 | 705 | 930 | 1625 |
| 1.3 | 202 | 403 | 651 | 858 | 1497 |
| 1.4 | 187 | 373 | 604 | 796 | 1387 |
| 1.5 | 175 | 347 | 564 | 741 | 1290 |
| 1.6 | - | 325 | 529 | 693 | 1205 |
| 1.7 | - | 306 | 499 | 650 | 1129 |
| 1.8 | - | 290 | 472 | 613 | 1061 |
| 1.9 | - | 277 | 448 | 581 | 999 |
| 2.0 | - | 268 | 427 | 553 | 987 |
| 2.1 | - | - | 408 | 528 | 944 |
| 2.2 | - | - | 391 | 505 | 855 |
| 2.3 | - | - | 376 | 485 | 818 |
| 2.4 | - | - | 362 | 467 | 785 |
| 2.5 | - | - | 349 | 450 | 755 |
| 2.6 | - | - | - | 434 | 728 |
| 2.7 | - | - | - | 419 | 703 |
| 2.8 | - | - | - | 405 | 680 |
| 2.9 | - | - | - | - | 659 |
| 3.0 | - | - | - | - | 639 |
| 3.1 | - | - | - | - | 620 |
| 3.2 | - | - | . | - | 603 |
| 3.3 | - | - | - | - | 588 |
| 3.4 | - | - | - | - | 575 |
| 3.5 | - | - | - | - | 564 |

Grade: BS EN 10255 (ISO 65)

## Vertical strut load capacity

Vertical load in kg per strut

| Table 2 | Tube g |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Length (m) | $\begin{gathered} 26.9 \mathrm{~mm} \\ \times 2.6 \end{gathered}$ | $\begin{gathered} 33.7 \mathrm{~mm} \\ \times 3.2 \end{gathered}$ | $\begin{gathered} 42.4 \mathrm{~mm} \\ \times 3.2 \end{gathered}$ | $\begin{gathered} 48.3 \mathrm{~mm} \\ \times 3.2 \end{gathered}$ | $\begin{gathered} 60.3 \mathrm{~mm} \\ \times 3.6 \end{gathered}$ |
| 0.3 | 1720 | 2950 | 4038 | 4783 | 7044 |
| 0.4 | 1435 | 2617 | 3703 | 4446 | 6661 |
| 0.5 | 1150 | 2284 | 3368 | 4109 | 6278 |
| 0.6 | 910 | 1951 | 3033 | 3772 | 5895 |
| 0.7 | 725 | 1618 | 2690 | 3435 | 5512 |
| 0.8 | 590 | 1348 | 2363 | 3098 | 5129 |
| 0.9 | 480 | 1128 | 2028 | 2761 | 4746 |
| 1.0 | - | 948 | 1752 | 2424 | 4363 |
| 1.1 | - | 798 | 1524 | 2134 | 3980 |
| 1.2 | - | - | 1340 | 1884 | 3597 |
| 1.3 | - | - | 1188 | 1668 | 3253 |
| 1.4 | - | - | 1066 | 1484 | 2951 |
| 1.5 | - | - | - | 1328 | 2681 |
| 1.6 | - | - | - | - | 2441 |
| 1.7 | - | - | - | - | 2226 |
| 1.8 | - | - | - | - | 2032 |
| 1.9 | - | - | - | - | 1857 |
| 2.0 | - | - | - | - | 1697 |

Grade: BS EN 10255 (ISO 65)

## Guardrail

Guardrail is the most common form of structure that is built with FastClamp fittings and requires careful consideration to meet required design loadings. Design loads are usually specified, however if unsure BS 6399 and BS 6180 are good reference documents.

The loading capacity of any guardrail structure is determined principally by the diameter, thickness and frequency of its Uprights. The table below contains our recommendations to safely meet the stated design loads based on the maximum permissible bending moment of the Upright tube.

| Table 3 | Tube $\varnothing$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $33.7 \times 3.2 \mathrm{~mm}$ | $42.4 \times 3.2 \mathrm{~mm}$ | $42.4 \times 4.0 \mathrm{~mm}$ | $48.3 \times 3.2 \mathrm{~mm}$ | $48.3 \times 4.0 \mathrm{~mm}$ | $48.3 \times 5.0 \mathrm{~mm}$ |
| Design Load | Maximum Upright Centres (mm) |  |  |  |  |  |
| 900 mm high |  |  |  |  |  |  |
| 360 N/m | 814 | 1369 | 1595 | 1828 | 2584 | 3052 |
| 740 N/m | 396 | 666 | 776 | 889 | 1257 | 2229 |
| 1500 N/m | 195 | 329 | 383 | 439 | 620 | 1100 |
| 1000 mm high |  |  |  |  |  |  |
| 360 N/m | 732 | 1232 | 1435 | 1645 | 2326 | 2930 |
| $740 \mathrm{~N} / \mathrm{m}$ | 356 | 599 | 698 | 800 | 1131 | 2006 |
| 1500 N/m | 176 | 296 | 345 | 395 | 558 | 990 |
| 1100 mm high |  |  |  |  |  |  |
| 360 N/m | 666 | 1120 | 1305 | 1496 | 2114 | 2778 |
| $740 \mathrm{~N} / \mathrm{m}$ | 324 | 545 | 635 | 728 | 1028 | 1824 |
| 1500 N/m | 160 | 269 | 313 | 359 | 507 | 900 |
| Grade: BS EN 10255 (ISO 65)Rails need only be 3.2 mm thick and the same diameter as the Upright. |  |  |  |  |  |  |

## Applications

FastClamp ${ }^{\otimes}$ is the safe and simple solution to build many different types of lightweight tubular structures, the applications are only limited by imagination and the following is just a small selection of what can be constructed.

- Handrailing
- Guardrailing
- Tyre racks
- Car ports
- Polytunnels
- Fruit cages
- Shopfitting
- Greenhouses
- Barriers
- Disabled ramps
- Sheds
- Roof Edge Protection
- Frames
- Canopies
- Market stalls
- Storage racks
- Work benches
- Exhibition stands
- Cattle pens
- Cricket screens
- Security screens
- Stables
- Climbing frames
- Goalposts


Trolley Parks


Roof Edge Protection



SPORTS AND CRICKET NETS

Guardrailing


## Domestic Projects



Handrails

## Products



| Type | Tube Size | $\mathbf{A}$ | $\mathbf{B}$ | Kg |
| :--- | :---: | :---: | :---: | :---: |
| BC05G25 | 33.7 | 60 | 33 | 0.51 |
| BC05G32 | 42.4 | 73 | 36 | 0.81 |
| BC05G40 | 48.3 | 83 | 45 | 1.14 |

Type BCO5 fitting has been designed as a variable angle in-line connection, adjustable through $202^{\circ}$.

WARNINGI: An entire structure should not be constructed from Type BC05 or any other swivel fitting, as these would not provide sufficient stability or rigidity in the structure due to the free rotation of the fitting.


| Type | Tube Size | A | Kg |
| :--- | :---: | :---: | :---: |
| C00G20 | 26.9 | 76 | 0.33 |
| C00G25 | 33.7 | 89 | 0.39 |
| COOG32 | 42.4 | 102 | 0.50 |
| C00G40 | 48.3 | 100 | 0.55 |
| COOG50 | 60.3 | 120 | 1.14 |

The Sleeve Joint is designed to provide an in-line joint between two tubes of the same diameter.

| 001 | Expanding Connector | Type | Tube Size | A | B | Kg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | C01G25 | 33.7 | 75 | 19 | 0.18 |
|  | $\left.\rightarrow\right\|^{B}$ | C01G32 | 42.4 | 75 | 19 | 0.27 |
|  |  | C01G40 | 48.3 | 75 | 19 | 0.35 |
|  |  | The expand tubes of th with the tub be used as type COO. <br> or joining tw <br> as a load be | nector is design iameter, and a e and can be lo earing joint, fo <br> ogether. Only m <br> t. The 150 mu |  |  | tween flush lamp <br> $k$ tube <br> uprigh |
| C02 | 90 Elbow | Type | Tube Size | A |  | Kg |
|  |  | C02G20 | 26.9 | 40 |  | 0.24 |
|  |  | C02G25 | 33.7 | 48 |  | 0.39 |
|  |  | C02G32 | 42.4 | 60 |  | 0.53 |
|  |  | C02G40 | 48.3 | 67 |  | 0.68 |
|  |  | C02G50 | 60.3 | 86 |  | 1.53 |

The $90^{\circ}$ Elbow is designed to provide a joint between two tubes at right angles to each other. Often used for railing ends and corners.



The variable elbow is designed to make joints at an angle of between $11^{\circ}$ $\& 30^{\circ}$.
CO6

The $45^{\circ}$ Tee is used as a bracing and strut component for strengthening structures.

## Products




## Products



| Type | Tube Size | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{K g}$ |
| :--- | :--- | :--- | :--- | :---: |
| C23G20 | 26.9 | 40 | 38 | 0.32 |
| C23G25 | 33.7 | 48 | 45 | 0.55 |
| C23G32 | 42.4 | 60 | 54 | 0.83 |
| C23G40 | 48.3 | 66 | 60 | 0.84 |
| C23G50 | 60.3 | 86 | 71 | 1.48 |

The Side Outlet Tee fitting provides a three way midrail joint for handrail and other structures. It is recommended that the handrail post is continuous through the fitting.

| Type | Tube Size | $\mathbf{A}$ | $\mathbf{B}$ | Kg |
| :--- | :--- | :--- | :--- | :--- |
| C24G20 | 26.9 | 41 | 59 | 0.43 |
| C24G25 | 33.7 | 48 | 65 | 0.75 |
| C24G32 | 42.4 | 60 | 80 | 1.14 |
| C24G40 | 48.3 | 67 | 85 | 1.19 |
| C24G50 | 60.3 | 86 | 90 | 2.12 |

The 4 Way Cross fitting provides a four way midrail joint for handrail and other structures. It is recommended that the handrail post is continuous through the fitting. This fitting may also be used for the top rail with the centre post capped with a C65 Plastic Stop End.

| Type | Tube Size | A | Kg |
| :--- | :---: | :---: | :---: |
| C25G20 | 26.9 | 65 | 0.31 |
| C25G25 | 33.7 | 66 | 0.37 |
| C25G32 | 42.4 | 73 | 0.48 |
| C25G40 | 48.3 | 81 | 0.49 |
| C25G50 | 60.3 | 110 | 0.85 |

Short Tee Swivel fittings are normally used in pairs to facilitate corner angles of $90^{\circ}$ to $180^{\circ}$. It is also used on staircases with a C02 and C03 fittings in conjunction with a short piece of tube and a C65 Plastic End Cap in landing areas. When ordering please specify the number of fittings required, not the number of pairs.


| Type | Tube Size | A | Kg |
| :--- | :---: | :---: | :---: |
| C28G25 | 33.7 | 162 | 0.71 |
| C28G32 | 42.4 | 190 | 1.12 |
| C28G40 | 48.3 | 218 | 1.38 |

The Adjustable 2 Socket Cross fitting will accommodate any rake angle from $30^{\circ}$ to $45^{\circ}$. This fitting is not recommended as the top fitting on a guardrail or balustrade system, use the C29 Adjustable Short Tee.

The Collar fitting can be used to support the CO3 fitting when the latter is used as a hinge. It can also be used to increase the load capacity of another fitting when used together. The C30 can be used as a stop for a sliding tube.


| Type | Tube Size | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | Kg |
| :--- | :---: | :---: | :---: | :---: | :---: |
| C31G20 | 26.9 | 25 | 30 | 15 | 0.14 |
| C31G25 | 33.7 | 25 | 33 | 15 | 0.19 |
| C31G32 | 42.4 | 25 | 38 | 15 | 0.25 |
| C31G40 | 48.3 | 25 | 41 | 15 | 0.26 |

This fitting is designed as a gate eye for light weight gates. If a heavy gate is being used we recommend that C03 and C30 type fittings are used to support the gate.
C32
The fitting is designed to provide an attachment for chain.

| Type | Tube Size | A | B | C | Ø | Kg |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| C34G25 | 33.7 | 45 | 25 | 5 | 6 | 0.16 |
| C34G32 | 42.4 | 53 | 40 | 5 | 11 | 0.32 |
| C34G40 | 48.3 | 56 | 40 | 5 | 11 | 0.35 |

The fitting is designed to provide an attachment for flat sheets or board. It may also be used as a gate stop. An alternative fitting for the attachment of boards is the C35 type.

The Male Swivel can be used on its own for use with a shakle and chain or with the C36 female swivel to mount rails at any angle for slopes. It can also be used for attaching flat sheets or boards to a structure and is available assembled with the C36 fittings as a C45 single swivel combination.

| Type | Tube Size | A | B | C | D | Kg |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| C36G20F | 26.9 | 39 | 35 | 53 | 10 | 0.24 |
| C36G25F | 33.7 | 41 | 35 | 60 | 10 | 0.33 |
| C36G32F | 42.4 | 44 | 35 | 63 | 10 | 0.38 |
| C36G40F | 48.3 | 50 | 35 | 70 | 10 | 0.46 |
| C36G50F | 60.3 | 70 | 40 | 95 | 10 | 0.84 |

The Female Swivel is designed as part of the swivel combination group of fittings. It can be used with the C10, C35, C37, C38 or C36M male swivel fittings.

## Products




## Products




Similar to a type C27, it is used on Safety Railing with slopes between $11^{\circ}$ $30^{\circ}$ and fixes the top rail to a vertical intermediate upright. Unlike the type C 27 these components are ex-stock and do not require machining.

| C58 | Two Socket Cross (114 to 30$)$ | Type | Tube Size | A | B | Kg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | C58G32 | 42.4 | 180 | 55 | 0.97 |
|  |  | C58G40 | 48.3 | 216 | 60 | 1.26 |

Similar to a type C26, it is used on Safety Railing with slopes between $11^{\circ}$ $30^{\circ}$ and fixes the mid rail to a vertical intermediate upright. Unlike the type C 26 these components are ex stock and do not require machining.


| Type | Tube Size | A | B | C | D | Ø | Kg |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C59G32 | 42.4 | 76 | 114 | 85 | 146 | 14 | 1.27 |
| C59G40 | 48.3 | 89 | 124 | 95 | 164 | 14 | 1.42 |

Similar to a type C53, it is used to set the upright at an angle between $11^{\circ}$ $30^{\circ}$. This fitting should only be subjected to light loads which cannot be positioned at $90^{\circ}$ to the applied load. For greater loads or other tube sizes a type C12 flange should be used with the upright bent to the required angle $\varnothing$ indicates the diameter of the fixing hole.

## Products



| Type | Tube Size |
| :--- | :---: |
| C60S25 | $26.9,33.7 \& 42.4$ |
| C60S32/40 | $48.3 \& 60.3$ |

Spare Screws come in two sizes, $1 / 4^{\prime \prime}$ ISO 228 for the 20 and 25 nb range and $3 / 8^{\prime \prime}$ ISO 228 for the 32,40 and 50 ranges.

| 061 | Allen Keys | Type | Tube Size |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | C61S25 26.9, 33.7 \& 42.4 |  |  |
|  |  | C61S32/40 48.3 \& 60.3 |  |  |
|  |  | Allen keys are available in two sizes, the first is suitable for the 20 and 25 nb fitting and the other for the 32,40 and 50 nb fittings. |  |  |
| C62R | Ratchet Keys | Type Tube Size |  |  |
|  |  | C62R | ALL SIZES |  |
|  |  | The Ratchet driver and dual keys are available to speed assembly. The Ratchet driver will allow tightening to the correct torque. |  |  |
| C65P | Plastic End Cap | Type | Tube Size | Kg |
|  |  | C65P20 | 26.9 | 0.008 |
|  |  | C65P25 | 33.7 | 0.010 |
|  |  | C65P32 | 42.4 | 0.010 |
|  |  | C65P40 | 48.3 | 0.016 |
|  |  | $\begin{array}{lr} \hline \text { C65P50 } & 60.3 \\ \hline \end{array}$ |  | 0.024 |

Plastic End Caps are available for finishing plain end tubes. Available in grey plastic they will fit medium and heavy gauge tube.

## C65G Metal End Cap


C66

[^0]

## Weather Cowl



| Type | Tube Size | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{H}$ | Kg |
| :--- | :---: | :---: | :---: | :---: | :---: |
| C68G25 | 33.7 | 140 | 25 | 125 | 0.28 |
| C68G32 | 42.4 | 150 | 25 | 150 | 0.33 |
| C68G40 | 48.3 | 166 | 25 | 150 | 0.38 |

The Weather Cowl is designed to cover the Railing base and provides a weather proof seal when used with a suitable flexible sealant.

| C69 | Square Plastic End Cap | Type | Tube Size | B | c | Kg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\bigcirc \mathrm{C}$ | C69P40x40 | 40x40SHS | 40 | 3.2 | 0.01 |
|  | $\xrightarrow{-1}$ | C69P50×50 | 50x50SHS | 50 | 3.2 | 0.01 |
|  | $\longrightarrow$ | C69P70X70 | 70x70SHS | 70 | 3.2 | 0.02 |
|  | - ${ }^{\text {B }}$ | The Plastic End Caps are available for finishing plain end square tubes. Available in grey plastic they will fit medium and heavy tube gauges. |  |  |  |  |
| C70 | Crimp Straight | Type | Tube Size | Aø | B | Kg |
|  |  | C70G25 | 33.7 | 26.0 | 34.0 | 0.30 |
|  |  | Straight Crimp Joints provide a permanent in-line connection for 33.7 mm diameter $\times 3.2 \mathrm{~mm}$ thick tube, a crimping tool is necessary. |  |  |  |  |



| Type | Tube Size | $\mathbf{A}$ | $\mathbf{B}$ | C | Kg |
| :--- | :---: | :---: | :---: | :---: | :---: |
| C71G25 | 33.7 | 26.0 | 38.0 | 34.0 | 0.47 |

Crimp Elbow provides a permanent $90^{\circ}$ connection for 33.7 mm diameter x 3.2 mm thick tube, a crimping tool is necessary.


## Products



## The DDA Range

## Handrailing for the disabled

Under the terms of the Equality Act 2010 (previously the Disability Discrimination Act), reasonable adjustments need to be made to public and commercial buildings to overcome physical barriers which prevent disabled access. The Building Regulations recommend an outside diameter tube size for installations of between $40 \mathrm{~mm}-45 \mathrm{~mm}$.

## The DDA Range

> Designed to satisfy the requirements of Part 'M' of the Building Regulations 2004

Our DDA range has been designed to meet these requirements by providing a non-discriminatory handrail solution that complies with the Equality Act and Part ' M ' of the Building Regulations. The range allows construction of a smooth continuous handrail of 42.4 mm diameter.

DDA fittings are supplied Hot dip Galvanised as standard but can be supplied in a powder coated finish to RAL standard colours (subject to quantity and availability from the coaters). In cold temperatures a powder coated finish will give the impression of being warmer to the touch.


## The DDA Range



| Type | A | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{K g}$ |
| :--- | :---: | :---: | :---: | :---: |
| DDA06 | 33.7 | 35 | 50 | 0.93 |

Expanding elbow (made from Ductile Iron) for creating a smooth $90^{\circ}$ bend in the $42.4 \mathrm{~mm} \mathrm{o} / \mathrm{d}$ tube.
DDAO7 Expanding Connector


| Type | $\mathbf{A}$ | $\mathbf{B}$ | Kg |
| :--- | :---: | :---: | :---: |
| DDA09 | 31 | 86 | 0.61 |

[^1]
## Roof Edge Protection

## DEFENDER <br> Roof Edogerpotection

Defender Roof Edge Protection systems operate on a counterbalance principle using curved PVC supports the handrail post; this includes an integral toeplate facility which is a fundamental requirement if there is no perimeter edge upstand.

All systems feature 1100 mm tall factory preassembled uprights that include open cradle fittings allowing the handrail tube to be quickly dropped into place instead of the time consuming process of the tube being fed through several fittings as required with other systems, speeding up assembly and saving cost.

For more information on Defender Roof Edge Protection please contact our Sales Office on 01384632385.

## Benefits of Defender Roof Edge Protection

- System is effectively maintenance free with hot dip galvanised fittings and tube to BS EN ISO 1461
- Recycled PVC counterweights
- For use on asphalt, coated steel sheeted, concrete or mineral felt roofs
- Rapid installation, no special tools or specialised labour required
- No on site welding or bending required
- Base fitting allows option of installing uprights up to $11^{\circ}$ from vertical
- Bolt on toeplate available to comply with HSG 33.

FastClamp fittings are used in construction of Defender Roof Edge Protection systems. Our systems are freestanding, with no requirement for fixings or drilling and subsequently no repair to the roof membrane, suitable for flat roofs up to $3^{\circ}$ pitch.

The systems can be configured to satisfy the requirements of BS EN 13374 Class A.


## SELF-CLOSING SAFETY GATES

FastClamp ${ }^{\circledR}$ supplies a range of self-closing industrial safety gates. Our gates are suitable for external and internal applications, and can be retro-fitted to existing structures.

The gates are spring loaded to automatically close behind the user, to provide a safe environment and overcome the problem of human error. FastClamp ${ }^{\circledR}$ industrial safety gates provide a safe access to demarcated areas within factories, warehouses and loading bays.

FastClamp ${ }^{\circledR}$ industrial safety gates are compliant with the requirements of EN 13374 and EN 14122. The gates have been extensive tested to ensure their durability and reliability.

FastClamp ${ }^{\circledR}$ self-closing safety gates are supplied 1 m wide and $2 \times 0.9 \mathrm{~m}$ wide for larger openings. The gates are available either hot dipped galvanised or powder coated in safety yellow and can be easily trimmed to size on-site.

- Single and double width gates
- Easy to assemble
- Performance tested for trouble free operation
- Fully adjustable for varying widths

How to calculate correct tube cutting length using types C05A, C57, C58, C59A, C72A \& C229 on slopes between $11^{\circ}$ to $30^{\circ}$

$x$ Dimensions to be added/subtracted from upright height
Subtract dimension $x, x 1, x 2, y$ or $y 1$ form upright centres (w). Please note the upright centres must be measured on the slope

| TYPE SIZE | 32 |  |  |  |  | 40 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | x | x1 | x2 | y | y1 | $\mathbf{x}$ | x1 | x2 | y | y1 |
| $11^{\circ}$ | -25 | -26 | -35 | -52 | -26 | -26 | -29 | -35 | -51 | -29 |
| $15^{\circ}$ | -21 | -28 | -46 | -53 | -58 | -22 | -31 | -47 | -52 | -31 |
| $20^{\circ}$ | -16 | -30 | -48 | -55 | -30 | -20 | -34 | -50 | -54 | -34 |
| $25^{\circ}$ | -15 | -33 | -52 | -59 | -33 | -14 | -38 | -54 | -57 | -38 |
| $30^{\circ}$ | -8 | -37 | -57 | -64 | -42 | -29 | -42 | -60 | -62 | -42 |

How to calculate correct tube cutting length using types C041, C042, C12 \& C221 on slopes between $30^{\circ}$ to $45^{\circ}$

Subtract dimension $\mathbf{x}$ to determine rail size on level

| TYPE SIZE | 32 | 40 |
| :---: | :---: | :---: |
|  | x | x |
| $35-45^{\circ}$ | -21 | -24 |

y Dimensions to be subtracted from upright centres
Please note upright centres must be measured on the slope

| TYPE SIZE | 32 | 40 |
| :---: | :---: | :---: |
|  | $\mathbf{y}$ | $\mathbf{y}$ |
| $30^{\circ}$ | -47 | -57 |
| $35^{\circ}$ | -52 | -62 |
| $40^{\circ}$ | -59 | -69 |
| $35^{\circ}$ | -68 | -79 |



How to calculate correct tube cutting length using types C05, C245, C28, C59A, C72 \& C29 on slopes between $30^{\circ}$ to $45^{\circ}$

## Subtract/add dimension $\mathrm{z}, \mathrm{z1}$ \& z2 from the upright height

| TYPE SIZE | 32 |  |  | $\mathbf{4 0}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{Z}$ | $\mathbf{z 1}$ | $\mathbf{z 2}$ | $\mathbf{z}$ | $\mathbf{z 1}$ | $\mathbf{z 2}$ |
| $\mathbf{3 0}$ | -17 | -48 | +5 | -27 | -47 | +6 |
| $\mathbf{3 5}$ | -16 | -59 | +5 | -21 | -53 | +6 |
| $\mathbf{4 0} 0^{\circ}$ | -8 | -69 | +5 | -14 | -68 | +6 |
| $\mathbf{5 5} 5^{\circ}$ | -2 | -80 | +5 | -5 | -79 | -4 |



Subtract dimension $x, x 1, x 2, y$ or $y 1$ form upright centres (w). Please note the upright centres must be measured on the slope

| TYPE SIZE | 32 |  |  |  |  | 40 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | x | x1 | x2 | y | y1 | x | x1 | x2 | y | y1 |
| $30^{\circ}$ | -20 | -39 | -55 | -37 | -49 | -17 | -42 | -48 | -43 | -64 |
| $35^{\circ}$ | -16 | -44 | -61 | -40 | -50 | -18 | -46 | -60 | -47 | -64 |
| $40^{\circ}$ | -20 | -47 | -71 | -45 | -51 | -21 | -52 | -65 | -52 | -64 |
| $45^{\circ}$ | -26 | -50 | -85 | -51 | -51 | -26 | -58 | -60 | -59 | -64 |

How to calculate correct tube cutting length for straight and level handrails
$\mathbf{w}=$ Distance between uprights $\mathbb{E}$ to $\mathbb{E}$

| SIZE |  |
| :---: | :---: |
| 32 | 40 |
| $\mathbf{x}$ | $\mathbf{x}$ |
| -22 | -25 |



Official supplier:

## PIPES \& VALVES



WESTBURY
Unit $4 \& 5$ Curtis Centre, Kingdom Avenue, Northacre Park,
Westbury, Wiltshire. BA13 4EW
Telephone: 01373858661 www.pipesandvalves.co.uk


[^0]:    The Double Mesh Clip is designed to provide a fixing for standard mesh panels. It is recommended that the clips are spaced at a maximum of 450mm apart.

[^1]:    Fitting (made from Ductile Iron) for creating an adjustable bend between the horizontal and the vertical.

