ClaronPolyseal® # Compound Suitability For Fluids Gases & Chemicals The following data and information has been derived from many sources but should be regarded as a general guide only. Consideration of compound selection for any given application should be in association with pressure, temperature and media requirements. #### Key To Symbols AU Polyurethane EPM Ethylene Propylene FKM Flourocarbon IIR Butyl VMQ Silicone NBR Medium Nitrile ### Key To Rating Guide A Satisfactory **B** Fair **C** Doubtful **D** Unsatisfactory - No Data | Immersion Medium | AU | EPDM | FKM | IIR | VMQ | NBR | Immersion Medium | AU EPDM FKN | | FKM | IIR | VMQ | NBR | |--|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|---|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | Acetaldehyde
Acetic Acid Gas at 70°C
Acetic Acid Glacial
Acetic Acid Diluted
Acetone | C
D
B | -
-
-
A
A | D
D
D
D | A
B
A
A | A
B
A
C | D
D
D
D | Diethyl Sebacate Dioctyl Phthalate Dioxane Dipentene Diphenyl | D
D
C
C | D
D
A
D | C
B
D
A
C | C
C
A
D | C
A
D
C | D
D
D
B | | Acetylene
Acrylonitrile
Air
Air at 180°C
Air With Oil Mist | D
D
A
D
A | A
D
A
D | A
D
A
A | A
B
A
D | B
A
A | A
D
A
D
A | Epichlorohydrin Ethylene Ethylacetate Ethyl Alcohol Ethyl Benzene | -
-
D
A
C | B
B
A
D | D
A
D
A
B | -
-
A
A
D | -
-
D
A
D | D
D
A
D | | Ammonia
Ammonium Hydroxide
Aniline
Asphalt
Beer | D
D
D
C
A | A
A
D
D
A | D
B
A
A | A
A
B
D
A | D
B
B
A | B
B
D
D | Ethylene Oxide at -20°C
Ethylene Glycol
Fatty Acids
Ferric Chloride
Ferric Sulphate | D
A
C
C | A
A
D
A | D
A
A
A | B
A
D
A | C
A
B
C
B | D
A
B
A | | Benzene/Benzol
Benzaldehyde
Blast Furnace Gas
Brake Fluid veg.
Bromine Water | D
C
C
D | D
B
C
A
D | A
C
A
D
A | D
B
C
A
D | D
B
A
C
D | D
D
B
D | Fluorine (Gas) Fluorobenzene Formaldehyde Formic Acid Freon 11 | D
D
D
D | D
D
A
B | A
A
A
D
B | C
D
A
B | D
D
C
C | D
D
A
D
B | | Bunker Oil Butane Calcium Hydroxide Calcium Hypochlorite Carbolic Acid (phenol) | C
B
D
D | D
D
A
A
D | A
A
A
B | D
A
C
C | B
D
A
C | A
A
A
D | Freon 12
Freon 21
Freon 22
Freon 113
Freon 114 | A
C
D
A
C | -
D
D
D | A
D
D
B | A
C
A
D
A | D
D
C
C | B
D
D
B | | Carbon Bisulphide
Carbon Dioxide
Carbon Monoxide at 70°C
Castor Oil
Chlorine | D
D
C
B | D
A
A
B
A | A
A
B
C
B | D
A
A
B
C | D
A
A
A
D | D
A
B
D | Furan
Furfural
Gasoline U.S. spec
Glucose
Glycerine | D
D
B
D | C
D
D
A
A | D
D
A
A | C
C
D
A | C
B
D
A | D
D
B
A | | Chlorinated Solvents Copper Sulphate Cotton Seed Oil Creosote Cyclohexane | D
D
A
C
A | D
A
D
D | A
A
A
A | D
A
D
D | D
C
C
D | D
A
A
D | Glycols
Hexane
Hydrazine
Hydrochloric Acid diluted
Hydrochloric Acid (dil) 70°C | D
A
B
D | A
D
A
A | A
A
A
A | A
D
A
A | A
B
D
A
D | A
A
B
A
D | | Diacetone Alcohol
Dibutyl Phthalate
Dichlorobenzene
Diethylene Glycol
Diethyl Ether | C
A
C
A
D | A
C
D
A
B | C
B
A
D | A
C
D
A
B | C
A
D
B
D | D
D
D
A
D | Hydrochloric Acid conc.
Hydrogen
Hydrogen Peroxide
Linseed Oil
Lubricating Oil | D
A
D
B | B
A
A
D | B
A
A
A | A
A
A
D | B
A
A
D
B | A
A
A
A | ## **Claron**Polyseal® # Compound Suitability For Fluids Gases & Chemicals The following data and information has been derived from many sources but should be regarded as a general guide only. Consideration of compound selection for any given application should be in association with pressure, temperature and media requirements. #### Key To Symbols AU Polyurethane EPM Ethylene Propylene FKM Flourocarbon IIR Butyl VMQ Silicone Medium Nitrile **NBR** #### Key To Rating Guide - A Satisfactory - **B** Fair - C DoubtfulD Unsatisfactory - No Data | Immersion Medium | AU | EPDM | FKM | IIR | VMQ | NBR | Immersion Medium | AU | EPDM | FKM | IIR | VMQ | NBR | |---|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|---|-----------------------|-----------------------|------------------|-----------------------|------------------|-----------------------| | Mercuric Chloride
Mercury
Methyl Chloride
Methyl Ethyl Ketone
Methylene Dichloride | D
A
D
D | A
A
D
B
D | A
A
A
D
B | A
A
D
B
D | A
A
D
A
D | A
A
C
D | Sewage
Silicone Oils & Greases
Silver Nitrate
Soap Solution
Sodium Salts | C
A
D
A
D | A
A
A
A | A
A
A
A | A
A
A
A | A
A
C
C | A
A
A
A | | Milk
Mineral Oil
Naphtha
Naphthalene
Natural Gas | A
A
C
B
A | A
D
D
D
B | A
A
A
A | A
D
D
D | A
A
C
C
B | A
A
B
D
A | Steam below 120°C
Steam above 120°C
Stearic Acid
Styrene
Sulphur Chloride | D
D
C
D | A
A
B
D | B
B
A
B | A
B
B
D | A
B
C
D | D
D
A
D | | Nitric Acid concentrated
Nitric Acid diluted
Nitro Benzene
Nitro Propane
Nitrogen | D
D
D
A | D
B
D
B | B
A
B
D
A | D
B
C
B | D
B
C
C | D
C
D
D | Sulphur Dioxide dry
Sulphur Acid diluted
Sulphuric Acid conc.
Sulphuric Acid Fuming
Tar | D
D
D
D | A
A
B
D | A
A
B
A | A
A
B
D | D
A
D
D | D
D
D
D | | Oleic Acid
Oxygen at -40°C
Oxygen at 200°C
Ozone
Palmitic Acid | D
B
C
C | D
A
B
C | A
A
B
A | D
B
D
B | B
A
A
D | A
B
D
D | Terpinol Toluene Transformer Oil Trichlorethylene triad Turpentine | D
D
C
D | D
D
D
D | A
A
A
A | D
D
D
D | D
D
D
D | B
D
B
D | | Paraffin Petroleum Oils Phenol Phenyl Benzene Phenyl Ethyl Ether | D
A
D
D | D
D
C
C | A
A
B
A
D | D
D
D
D | D
B
D
D | A
A
D
D | Vaseline Vegetable Oil Vinegar Wines & Spirits Xylene | D
B
C
D | B
C
A
A
D | A
A
D
A | D
B
A
A
D | D
D
D
A | A
B
D
A
D | | Phenyl Hydrazine
Phorone
Phosphoric Acid 45%
Phosphoric Acid 45%170°C
Picric Acid diluted | D
-
D
D | D
-
A
A | A
-
A
A | C
A
A
A | D
A
D
D | D
D
B
A | Zinc Salts | D | A | А | A | D | Α | | Piperdine Plating Solution (Chrome) Plating Solution (Others) Potassium Hydroxide Producer Gas | D
D
C
D
C | C
-
-
A
A | D
C
A
A | C
-
A
A | D
C
C
D | D
D
A
B | | | | | | | | | Propane Gas Propylene Pyridine Pyrrole Sal-Ammoniac | B
-
D
-
C | D
-
B
C
A | A
A
D
- | D
D
B
D | C
-
D
-
B | A
B
D
D | | | | | | | | # Seal Selection Materials - Plastic Faced Seals The following tables are designed as a guide to the correct selection of the sealing element and energiser materials for your particular application. The sealing element is dynamic making it's mechanical properties the priority in selection. More detailed capabilities relevent to individual seal types are given within the catalogue. The static energisers are rubber based compounds therefore fluid compatibility and temperature range are the main criteria for selection. ### Materials For Sealing Element | Material suffix | Description | Colour | Material Properties & Application | |-----------------|----------------------------------|--------------|--| | В | Bronze
PTFE with
additives | Brown | Very high mechanical duties.
Good compressive strength for oil hydraulics.
(Standard Material for styles CS5, 841, 851, CS6, 751 & 741) | | С | Carbon
PTFE | Black | Medium Mechanical duties.
Generally for pneumatic applications and water based fluids
(Not Seawater). For soft mating surfaces and unlubricated
conditions. | | G | Glass PTFE | Black | High mechanical duties.
For water and oil hydraulics, pneumatics
and unlubricated applications. | | V | Virgin
PTFE | White | Light mechanical duties. For anti-extrusion rings and pressure seals. Low friction and almost totaly inert. Suitable for food and potable water applications. (NWC approved) Standard material for anti-extrusion rings, CS1, CS2, CS4 | | VM | Modified
PTFE | Blue | Medium mechanical duties.
Much lower wear rate than Virgin PTFE.
Very good chemical resistance
Standard material for styles 931, 941, 951 | | UH | UHMWPE | Off
White | Medium mechanical duties. For water and oil hydraulics, pneumatics, and unlubricated applications. Lower temperature and speed range than PTFE but very good abrasion resistance. Suitable for soft mating surfaces. | ### Materials For Energiser | Compound | Temp Range
(Intermitant) °C | Recommended For | NOT Recommended For | | | | | | |---|--------------------------------|---|---|--|--|--|--|--| | NBR Nitrile
(Standard
Material) | -40 to +120 | Petroleum based oils and fluids, cold
water, Silicone greases and oils,
ethylene glycol based fluids, Di-ester
based lubricants. | Automotive brake fluid,
Phosphate ester fluids. | | | | | | | EPM, EPDM
Ethylene
Propylene | -50 to +150 | Phosphate ester based fluids,
Automotive brake fluid, Water, Steam. | Petroleum based oils and fluids, Di-ester based lubricants. | | | | | | | IIR Butyl | -40 to +150 | Phosphate ester fluids, Silicone greases and fluids. | Petroleum based oils and fluids, Di-ester based lubricants. | | | | | | | FKM
Flurocarbon | -50 to +200 | Petroleum oils, Di-ester based
lubricants, Silicate ester
lubricants,Silicone greases & fluids,
Certain phosphate ester fluids. | Skydrol Fluids, Low
molecular weight esters &
ethers. | | | | | | | Si Silicone | -90 to +240 | High analine point oils, Chlorinated di-phenyls, Dry heat. | Most petroleum based fluids, Water and steam. | | | | | | | Note: If Energiser Materials Other Than Nitrile Are Required, Consult CLARON For Part Number. | | | | | | | | | ### Storage: Deterioration of rubber products will be minimised if stored in accordance with BS 3574:1989 P.T.F.E. is regarded as having no restrictions in terms of shelf life. # Compound Suitability For Hydraulic Fluids Continuous Operating Temp. °C with Seal Materials | | | | | Materials | | | | | | | |--------------|--------------|--------------------|---|-----------|-----|-----|------|-----|------|-----| | DIN
Class | ISO
Class | Туре | Description | NBR | FKM | AU | EPDM | POM | PTFE | PA | | н | НН | | Mineral Oil without additives | 100 | 150 | 100 | NS | 100 | 200 | 120 | | H-L | HL | | Mineral Fluid with anti-corrosion and anti-ageing additives | 100 | 150 | 100 | NS | 100 | 200 | 120 | | H-LP | НМ | Mineral
Fluid | As HL plus additives reducing wear, and raising load capacity | 100 | 150 | 100 | NS | 100 | 200 | 120 | | H-LPD | - | | As H-LP but with detergents and dispersants | 100 | 150 | 100 | NS | 100 | 200 | 120 | | H-V | HV | | As H-LP but with improved viscosity temperature behaviour | 100 | 150 | 100 | NS | 100 | 200 | 120 | | HFA E | | | Emulsions of mineral
oil in water.
Water content 80-95% | 55 | 60 | 40 | NS | 55 | 55 | 55 | | HFA S | | Flame
Retardent | Synthetic oil in water
Water content 80-95% | 55 | 60 | 40 | NS | 55 | 55 | 55 | | HFB | | with
Water | Emulsions of water in mineral oil Water content 40% | 60 | 60 | 40 | NS | 60 | 60 | 60 | | HFC | | | Aqueous polymer solutions.
Water content 35% | 60 | 60 | NS | 60 | 60 | 60 | 60 | | HFD R | | Flame | Phosphoric acid ester based | NS | 150 | NS | 120 | 80 | 150 | 80 | | HFD S | | Retardent without | Chlorinated hydrocarbon based | NS | 150 | NS | 120 | 80 | 150 | 80 | | HFD T | | Water | Mixtures of HFD R
and HFD S | NS | 150 | NS | 120 | 80 | 150 | 80 | | HEPG | | | Polyglycol based | NS | 100 | NS | 120 | 80 | 150 | 80 | | HETG | | Biodegra-
dable | Vegetable Oil basec | 60 | 60 | 60 | NS | 60 | 60 | 60 | | HEES | | | Fully synthetic ester based | NS | 100 | 60 | NS | 100 | 100 | 100 | NS = Not Suitable