

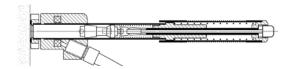
PORTABLE HARDNESS TESTER

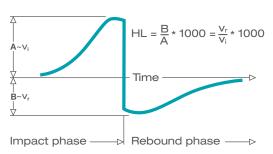
- Large, easy to read display with backlight
- Highly accurate ± 4 HL
- Automatic correction for impact direction
- Converts to all common hardness scales (HV, HB, HRC, HRB, HS, Rm)
- Light weight and easy to use
- Fast testing for a wide range of applications
- Large memory with on-screen review of data
- Download to PC or print directly via USB, Ethernet, or RS-232
- User profiles for fast change of all settings
- Rugged sealed membrane keypad
- Internal rechargeable batteries or standard "C" cells
- Custom conversions for uncommon alloys

Standardized according to ASTM A956 and DIN 50156 Equotip 3, a high quality Swiss product

Application Range

- · Good for all metals
- Ideal for production level testing
- Best suited for on-site testing of heavy, big or already installed parts
- Handy for difficult to access or confined test locations
- Automatic compensation for impact direction
- Excellent for material selection and acceptance tests
- Easy to use and accurate on curved test surfaces (R > 10 mm)


Primary Industries


- Metal production & processing
- Automotive & transportation
- Machinery & power plants
- Petro-chemical, refineries
- Aerospace & shipyard
- Metal constructions
- Testing services & laboratories

The Equotip Measuring Principle

Equotip uses a proven, dynamic testing principle. An impact body with a hard metal test tip is propelled by spring force against the surface of the test piece. Surface deformation takes place when the impact body hits the test surface, which will result in loss of kinetic energy. This energy loss is detected by a comparison of velocities v_i and v_r when the impact body is at a precise distance from the surface for both the impact and rebound phase of the test, respectively.

Velocity measurements are achieved through a permanent magnet in the impact body that generates an induction voltage in the coil of the impact device. The signal voltage is proportional to the velocity of the impact body. Signal processing provides the hardness reading for display and storage.

Performing the Hardness Test

Easy to use - simple operating elements allow for accurate measurements even by occasional users.

1. Load Simply load the impact device by sliding the loading tube forward.

2. Place Then place and hold the impact device on the surface the trigger button. The of the test piece at the desired test point.

3. Measure

Trigger the impact by pressing hardness value will be instantaneously displayed.

4. Display Showing all information on a large clear display.

Modern electronics with power saving features provide for long operating life. The large LCD display always shows how the Equotip is configured to test. Variable function keys allow for quick change of common test parameters, and the on screen hint line shows the other active control keys. The context sensitive help files give the operator quick access to the operating instructions with the press of a single button.

No subjective measuring errors are possible, giving highly repeatable results. Internal self diagnostics with error messages assure reliable test results. Readings can be stored automatically in the internal memory or sent directly to a printer. PC evaluation software allows for data analysis.

Advanced Equotip® 3 Impact Devices

Туре	Part number	Application area	Impact energy	Indenter	
С	353 00 500	Reduced impact energy. For surface-hardened components, coatings, thin or impact-sensitive parts (small indentation).	3 Nmm	Tungsten carbide 3 mm	
D	353 00 100	Most widely used probe. For the majority of testing applications.	11 Nmm	Tungsten carbide 3 mm	
DC	353 00 110	Short impact device. For applications in restricted spaces, e.g. in bores, cylinders or for measurements in assembled machines.	11 Nmm	Tungsten carbide 3 mm	
DL	353 00 120	Slim measuring nose. For measurement under extreme space limitations or on the floor of grooves.	11 Nmm	Tungsten carbide 2.8 mm	
E	353 00 400	Diamond indenter. For measurements in extreme hardness ranges (above 50 HRC / 650 HV). Tool steels with high carbide content.	11 Nmm	Polycrystalline diamond 3 mm	
G	353 00 300	Increased impact energy. Solid components, e.g. heavy-duty casts and forged parts.	90 Nmm	Tungsten carbide 5 mm	
S	353 00 200	Ceramic indenter. For measurements in extreme hardness ranges (above 50 HRC / 650 HV). Tool steels with a high carbide content.	11 Nmm	Ceramics 3 mm	

Equotip 3 Measuring Range

Fields of application			D/DC	DL	S	E	G	С
1 Steel and cast steel	Vickers Brinell Rockwell	HV HB HRB HRC	81-955 81-654 38-100 20-68	80-950 81-646 37-100 21-68	101-964 101-640 22-70	84-1211 83-686 20-72	90-646 48-100	81-1012 81-694 20-70
	Shore Rm N/mm²	HRA HS σ1 σ2 σ3	30-99 275-2194 616-1480 449-847	31-97 275-2297 614-1485 449-849	61-88 28-104 340-2194 615-1480 450-846	61-88 29-103 283-2195 616-1479 448-849	305-2194 618-1478 450-847	30-102 275-2194 615-1479 450-846
2 Cold work tool steel	Vickers Rockwell C	HV HRC	80-900 21-67	80-905 21-67	104-924 22-68	82-1009 23-70		98-942 20-67
3 Stainless steel	Vickers Brinell Rockwell	HV HB HRB HRC	85-802 85-655 46-102 20-62		119-934 105-656 70-104 21-64	88-668 87-661 49-102 20-64		
4 Cast iron lamellar graphite GG	Brinell Vickers Rockwell	HB HV HRC	90-664 90-698 21-59				92-326	
5 Cast iron, nodular graphite GGG	Brinell Vickers Rockwell	HB HV HRC	95-686 96-724 21-60				127-364	
6 Cast aluminium alloys	Brinell Vickers Rockwell	HB HV HRB	19-164 22-193 24-85	20-187 21-191	20-184 22-196	23-176 22-198	19-168 24-86	21-167 23-85
7 Copper/zinc-alloys (brass)	Brinell Rockwell	HB HRB	40-173 14-95					
8 CuAl/CuSn-alloys (bronze)	Brinell	НВ	60-290					
9 Wrought copper alloys, low alloyed	Brinell	НВ	45-315					

Test Piece Requirements

	Impact devices D, DC, DL, E, S	С	G	
Preparation of the surface	_, _, _, _,			
Roughness class ISO Max. roughness depth Rt Centre line average CLA, AA, Ra	N7 10 µm/400µinch 2 µm/80 µinch	N5 2.5 µm/100µinch 0.4 µm/16 µinch	N9 30 µm/1200 µinch 7 µm/275 µinch	
Min. weight of samples				
of compact shape on solid support coupled on plate	5 kg/11lbs 2 kg/4.5 lbs 0.05 kg/0.2 lbs	1.5 kg/3.3 lbs 0.5 kg/1.1 lbs 0.02 kg/0.045 lbs	15 kg/33 lbs 5 kg/11 lbs 0.5 kg/1.1 lbs	
Min. thickness of sample				
uncoupled coupled surface layer thickness	25 mm/0.98 inch 3 mm/0.12 inch 0.8 mm/0.03 inch	15 mm / 0.59 inch 1 mm / 0.04 inch 0.2 mm / 0.008 inch	70 mm/2.73 inch 10 mm/0.4 inch	
	Impact devices D, DC, DL, E, S	С	G	
Indentation size on test surface				
Indentation size on test surface with 300 HV, 30 HRC	•			
	9 0.54 mm/0.21 inch 24 μm/960 μinch	0.38 mm/0.015 inch 12 µm/480 µinch	1.03 mm/0.04 inch 53 µm/2120 µinch	
with 300 HV, 30 HRC diameter	0.54 mm/0.21 inch	0.00		
with 300 HV, 30 HRC diameter depth with 600 HV, 55 HRC	0.54 mm/0.21 inch	0.00		
with 300 HV, 30 HRC diameter depth with 600 HV, 55 HRC diameter	0.54 mm/0.21 inch 24 µm/960 µinch 0.45 mm/0.017 inch	12 µm/480 µinch 0.32 mm/0.012 inch	53 µm/2120 µinch 0.9 mm/0.035	
with 300 HV, 30 HRC diameter depth with 600 HV, 55 HRC diameter depth with 800 HV, 63 HRC diameter	0.54 mm/0.21 inch 24 µm/960 µinch 0.45 mm/0.017 inch	12 µm/480 µinch 0.32 mm/0.012 inch	53 µm/2120 µinch 0.9 mm/0.035	

Equotip® Test Blocks

Proceq is world-leading with its wide range of different Leeb metal hardness test blocks and the only producer of Leeb instruments who addresses all relevant standards (e.g. DIN 50156, ASTM 956-06) completely. Test blocks are an essential component of any hardness testing equipment.

Blocks of various hardness levels are available as required by national measurement standards. The customers should choose the blocks based on the hardness level which is used for their particular application. This guarantees that the instrument's functionality can be verified on-site within the correct hardness range.

Equotip test blocks are delivered calibrated with the impact device that the customer uses to check his metal parts, e.g. in HLD, HLDL, HLE. This means that the calibrations are precise and are not based on conversions. Calibration certificates are issued by Proceq (factory calibration) or an accredited institute (national traceability), as per customer request.

Technical Information

DIMENSIONS: 170 x 200 x 45 mm (6.7 x 7.9 x 1.8 inches)

WEIGHT: 780g plus approx. 120g battery pack

UNIT MATERIAL: shock resistant ABS plastic

UNIT DISPLAY: large, QVGA LCD with adjustable contrast and backlight

RESOLUTION: 1 HL; 1 HV; 1 HB; 0.1 HRC; 0.1 HRB; 0.1 HS; 1 N/mm²; Rm

INTERNAL DATA STORAGE: ~ 100'000 measured values

BATTERY TYPE: rechargeable Li-lon or 3 standard size "C" cells

OPERATING TEMPERATURE: 0 to $+50^{\circ}$ C (32 to 122°F)

STORAGE TEMPERATURE: -10 to +60°C (14 to 140°F)

HUMIDITY: 90% max.

INPUT-SOCKETS IMPACT DEVICES: 20-pole

COMMUNICATION: Ethernet, USB & RS-232. Bi-directional with PC

PC APPLICATION PROGRAM: Equolink 3

ACCURACY: ±4HL

Standards and Guidelines applied

ASTM A956 (2006)

ASME CRTD-91 (2009)

DIN 50156 (2007)

DGZfP Guideline MC 1 (2008)

VDI / VDE Guideline 2616 Paper 1 (2002)

Nordtest Technical Reports 99.12, 99.13, 99.36

GB/T 17394 (1998)

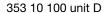
JB/T 9378 (2001)

Ordering Information

353 10 100 Equotip 3 Hardness Tester, unit D, includes

Equotip3 indicating device, AC adapter, Equotip3 impact device D with cable, test block D, USB-cable, USB-memory stick, cleaning brush, coupling paste, carrying case, support ring D6 and D6a, operating instructions, quick reference guide, calibration certificate

353 10 300 Equotip 3 Hardness Tester, unit G, includes


Equotip 3 indicating device, AC adapter, Equotip 3 impact device G with cable, test block G, support ring G6 and G6a, carrying case, USB-cable, USB-memory stick, cleaning brush, operating instructions, quick reference guide, calibration certificate

For other combinations, use Equotip3 basic unit with impact device and test block.

353 10 050 Equotip 3 Hardness Tester, basic unit, includes

Equotip 3 indicating device, AC adapter, carrying case, USB-cable, USB-memory stick, operating instructions and quick reference guide. The customer needs to buy the appropriate impact device and test block in addition to the Equotip 3 basic unit

353 10 300 unit G

353 10 050 basic unit

Accessories

Equotip 3 Automation Package
Protective carry pocket for Equotip 3 indicating device (use together with 380 00 079)
Carrying strap adjustable, with padding (use together with 380 00 070)
Equotip 3 impact device cable 1.5 m 4-pole
Equotip 3 impact device extension cable 5 m 4-pole
Impact device cable existing Equotip 2 impact device to new Equotip 3 display device
Impact device cable new Equotip3 impact device to existing Equotip2 display device
USB cable, 1.8m
Equotip 3 RS-232 adapter cable for connection to printer
Rechargeable Equotip 3 battery
Set of support rings (12 pcs.)
Coupling paste

Subject to change without notice.

All information contained in this documentation is presented in good faith and believed to be correct. Proceq SA makes no warranties and excludes all liability as to the completeness and/or accuracy of the information. For the use and application of any product manufactured and/or sold by Proceq SA explicit reference is made to the particular applicable operating instructions.

Head Office

Proceq SA

Ringstrasse 2 CH-8603 Schwerzenbach Switzerland

Phone: +41 (0)43 355 38 00 Fax: +41 (0)43 355 38 12

info@proceq.com www.proceq.com

