Mechanical properties - GPP pultruded profiles

Designing with pultruded profiles is similar to designing with conventional materials. The designer should however consider the following:

- High_Strength Pultruded profiles are stronger than steel on a weight per weight basis and can be used to form considerable weight bearing structures.
- Modulus Of Elasticity Pultruded profiles have a lower modulus of elasticity than steel. Deflection can be a limiting design factor.
- Shear Modulus Pultruded profiles have a lower shear modulus than conventional materials.
- Lightweight Pultruded profiles weigh approximately 30% less than aluminium and 80% less than steel, resulting in structures which can easily be transported, handled and lifted into place.
- Temperature Pultruded profiles become stronger in cold temperatures, but may suffer from slight degradation at high temperatures.

Characteristic Material Properties - Pultrus	sion (1:1 M	at/Roving	Construction)
Property	Symbol	Characteristic Value	
Tensile Strength (longitudinal)	$\sigma_{x,t,k}$	207	N/mm ²
Tensile Strength (transverse)	$\sigma_{y,t,k}$	48	N/mm ²
Tensile Modulus (longitudinal)	E _{x,t,k}	17.2	kN/mm ²
Tensile Modulus (transverse)	$E_{y,t,k}$	5.5	kN/mm ²
Compressive Strength (longitudinal)	$\sigma_{x,c,k}$	207	N/mm ²
Compressive Strength (transverse)	$\sigma_{y,c,k}$	103	N/mm ²
Compressive Modulus (longitudinal)	$E_{x,c,k}$	17.2	kN/mm ²
Compressive Modulus (transverse)	$E_{y,c,k}$	6.9	kN/mm ²
Shear Strength (in plane)	$\tau_{xy,k}$	31	N/mm ²
Shear Modulus (in plane)	$G_{xy,k}$	2.9	kN/mm ²
Flexural Strength (longitudinal)	$\sigma_{x,b,k}$	207	N/mm ²
Flexural Strength (transverse)	$\sigma_{y,b,k}$	69	N/mm ²
Flexural Modulus (longitudinal)	$E_{x,b,k}$	13.8	kN/mm ²
Flexural Modulus (transverse)	$E_{y,b,k}$	5.5	kN/mm ²
Poisson's Ratio (longitudinal)	ν_{xy}	0.33	
Poisson's Ratio (transverse)	$ u_{yx} $	0.11	

NOMENCLATURE

lyy - Second moment of area (Y-Y axis)

iyy - Radius Of Gyration (Y-Y axis)

Izz - Second Moment Of Area (Z-Z axis)

izz - Radius Of Gyration (Z-Z axis)

Wyy - Section Modulus (Y-Y axis) Wzz - Section Modulus (Z-Z axis)

J - Torsional Constant